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Abstract

In this paper, absorptive capacity e�ects of human capital on innova-

tion are introduced into the endogenous growth model. In order to empir-

ically test their relevance, a spatial endogenous sample splitting estimator

is proposed. With the help of the proposed model and estimation strategy,

we are able to empirically demonstrate the relevance of absorptive capac-

ity e�ects on innovation controlling for the direct impact of human cap-

ital. Accounting for threshold e�ects sheds lights on relevant absorptive

capacity-induced di�erences in R&D productivity patterns across Europe

which would be masked by standard estimation procedures. Moreover,

absorptive capacity signi�cantly a�ects the geographical impact and the

relative magnitude of the spatial e�ects from regional R&D policy. These

results suggest consequences for the economic viability of R&D in lag-

ging areas and the spatial con�guration of relative regional development

patterns.

1 Introduction

Economic theory suggests that the e�ectiveness of pecuniary R&D policy and
knowledge spillover absorption is associated with a series of structural char-
acteristics of a region, in particular relating to human capital endowments
(Rodríguez-Pose, 2001). This function of human capital facilitating the pro-
ductive transformation of R&D inputs into innovation outcomes is generally
referred to as absorptive capacity. While the instrumental role of regional ab-
sorptive capacity in fostering innovation performance is widely acknowledged,
little attention has been paid to modelling the mechanism of how absorptive
capacity stimulates innovation.

The principal contribution of this paper refers to suggesting a simple ap-
proach for explicitly introducing absorptive capacity into the endogenous growth
model. This is done in a theoretically consistent way by taking account of the se-
quential nature of the relationship between absorptive capacity and other R&D
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inputs. In this way, it also allows for separating the absorptive capacity e�ect
of human capital from its direct impact on innovation. In order to empirically
test the role of indirect human capital e�ects, an intuitive and robust estima-
tion strategy is suggested by means of a spatial endogenous sample splitting
estimator.

With the help of the proposed model and estimation strategy, we are able to
empirically demonstrate the relevance of absorptive capacity e�ects on innova-
tion controlling for the direct impact of human capital. The estimation results
show that the absorptive capacity channel matters for innovation performance
by stimulating the productivity of R&D investment and knowledge spillover
assimilation. Hence, absorptive capacity endowments may have signi�cant con-
sequences for the economic viability of R&D in lagging regions.

Secondly, accounting for threshold e�ects sheds lights on relevant absorp-
tive capacity-induced di�erences in R&D productivity patterns across Europe
which would be masked by standard estimation procedures. The results add
to the existing literature in demonstrating that the relatively low absorptive
capacity endowments in Eastern and Southern European regions are not only
a descriptive property of these areas, but have a causal e�ect on innovation by
triggering lower productivity rates of R&D investment and knowledge spillover
assimilation.

Finally, it is found that absorptive capacity signi�cantly a�ects the geo-
graphical impact and the relative magnitude of the spatial e�ects from regional
R&D policy. Hence, location in the vicinity of regions which themselves are
better equipped for absorbing external knowledge increases both the likelihood
of being exposed to spillovers as well as their magnitude. Consequently, not
only a region's internal endowment, but also the level of absorptive capacity of
its neighbouring areas, matter for e�ective spillover assimilation. These �nd-
ings suggest consequences for the spatial con�guration of regional development
patterns.

This paper proceeds as follows. In Section 2, the theoretical model of absorp-
tive capacity e�ects of human capital is introduced. The empirical model and
the data are presented in Section 3. Section 4 outlines the estimation strategy
and the econometric method while Section 5 presents the estimation results fo-
cusing on spatial dynamics and providing s series of robustness checks. Section
6 concludes.

2 Theoretical model

A major development in the study of innovation policy refers to the recogni-
tion of the role of geography (Audretsch and Feldman, 2003; Krugman, 1991a)
which has led to an increasing focus on the regional level, both in theoretical
and empirical analysis (Cooke et al., 2007). It has been discovered that innova-
tive activity is path-dependent and strongly clusters in space (Redding, 2002).
Empirically, this is evident from the clear core-periphery pattern of innovation
performance in Europe (Table 1 on page 7).
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Economic theory suggests that structural characteristics of a region are in-
strumental in explaining its innovation performance (Rodríguez-Pose, 2001).
The latter are conventionally subsumed under the heading of absorptive capac-
ity. Di�erent forms of human capital are most frequently associated with gen-
erating such absorptive capacity (Cohen and Levinthal, 1990). The theoretical
concept of absorptive capacity has been prominently brought forward by Cohen
and Levinthal (1990), originally as a contribution to �rm organization theory.
Later it has been applied to more aggregate contexts, including regions (Caragliu
and Nijkamp, 2011; Roper and Love, 2006; Kallio et al., 2010). Because of its
function of linking R&D inputs to innovative outcomes, it seems crucial to un-
derstand the determinants and e�ects of absorptive capacity. While it is rather
intuitive that su�cient and suitable human capital is necessary for transforming
R&D investment into innovation, e�ectively making use of knowledge spillovers
may equally depend on speci�c complementary knowledge embodied in human
capital (Cohen and Levinthal, 1990).

Hence, the theoretical proposition of absorptive capacity facilitating the ef-
fectiveness of R&D inputs is theoretically appealing and �rmly based in the
academic literature and in policy-making. Little attention, however, has been
paid to formally modelling the mechanism of how absorptive capacity stimu-
lates innovation. This paper o�ers a simple extension of the knowledge produc-
tion function that explicitly introduces absorptive capacity into the endogenous
growth model.

While endogenously accounting for human capital has been a central advance
in growth theory, conventional endogenous growth models typically consider
human capital only as a direct determinant of the knowledge stock and through
the latter, as a driver of economic growth. The theoretical framework of this
paper o�ers a conceptually relevant addition to the standard framework by
allowing for indirect e�ects of human capital via its impact on the productivity
of R&D inputs.

Following Romer (1990), a simple output function, for region j1,

Yj = AjK
α
j L

1−α
j , (1)

is considered. Capital, K, and labour, L, are characterised by constant returns
while knowledge production A is subject to increasing returns. Moreover, in
contrast to traditional growth models, it refers to an endogenous determinant
of output. In his original model, Romer (1990) proposes a linear relationship
between technological progress and the R&D inputs, human capital, H, and the
existing knowledge stock, A,

Ȧ = δHA. (2)

An increase in the number of researchers or in the stock of knowledge available
to a region leads to a proportional rise in knowledge production and, thus, in
economic growth. However, Jones (2005) demonstrated that this proposition is
incompatible with empirical evidence and modi�ed Romer's model accordingly
to account for the productivity parameters of H and A.

1The subscript is suppressed in the following.
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Hence, growth of the stock of knowledge in Jones' model is given by

Ȧ = δHβAρRλ (3)

with β, ρ and λ denoting the productivity parameters of the R&D inputs re-
spectively. In Eq. (3), physical R&D inputs R are considered in addition to
human capital and the knowledge stock.

In this paper, an alternative speci�cation of the knowledge production func-
tion is proposed that explicitly models absorptive capacity within an endogenous
growth framework and thus, postulates indirect e�ects of human capital on the
productivity parameters of R&D inputs. In particular, we suggest lifting the
constraint of constant returns to R&D inputs and allowing them to be a�ected
by absorptive capacity, as constituted by human capital, H,

Ȧ = δHβAρRλ (4)

with
ρ = ρ(H) (5)

and
λ = λ(H), (6)

and thus, contrasting this absorptive capacity function of human capital from
its direct innovation e�ect, β.

This general proposition a priori accomodates any theoretically consistent
functional form for ρ and λ. Introducing a threshold e�ect in the impact of
human capital on the productivity parameters of R&D inputs and knowledge
resources explicitly embraces the sequential logic of absorptive capacity by pos-
tulating that �rst a minimum level of human capital is required for allowing
a region to e�ciently transform R&D and knowledge inputs into innovation.
Hence, the productivity parameters of the available knowledge stock and R&D
inputs are allowed to vary depending on a critical level of absorptive capacity
endowments. We obtain the following functional form from applying a threshold
condition to a log-transformed version of Eq. (4),

log Ȧ = log δ + β logH + ρH≤γ logAH≤γ + ρH>γ logAH>γ (7)

+λH≤γ logRH≤γ + λH>γ logRH>γ ,

with γ denoting the threshold value.
As stated in Eqs. (4-6) or Eq. (7) when relying on the threshold assumption,

the model allows human capital to in�uence innovation both directly via β and
indirectly via its e�ect on the productivity parameters of other R&D inputs and
the knowledge stock, λ and ρ. If ρH≤γand ρH>γ as well as λH≤γand λH>γ in
Eq. (7) were equal, the indirect e�ect of human capital would not be relevant
and Jones' original model would be obtained. Hence, the proposed model nests
the conventional speci�cation of the knowledge production function and is, thus,
compatible with existing theory.
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By analysing human capital from an absorptive capacity perspective, any
singular focus on a concept of human capital as a complementarity to other R&D
inputs is challenged. Rather it is suggested to extend this standard framework
by adding a sequential relationship of human capital being a prerequisite for
the e�ective employment of R&D inputs and knowledge resources. In this way,
we suggest a simple approach for modelling absorptive capacity explicitly and
consistently with its theoretical concept in the endogenous growth framework.
In Section 3.1, an empirical approach for estimating the impact of the proposed
absorptive capacity channel is o�ered.

3 Empirical model and data

3.1 Empirical model

The empirical model is directly derived from the theoretical framework. The em-
pirical approach departs from several related contributions (i.e. Akcomak and
ter Weel, 2009) by explicitly accounting for knowledge spillovers. Since such
a spatially interdependent modelling approach is often absent from empirical
papers drawing on structural endogenous growth models and since knowledge
spillovers might in practice be of particular relevance to lagging areas, we will fo-
cus on estimating the productivity parameter for those parts of the knowledge
stock, A, that stems from knowledge spillovers. The productivity parameter
ρ for knowledge spillovers is modelled in terms of the spatial dependence pa-
rameter of the spatial lag of innovation activity, WȦ. A useful feature of this
approach refers to the parameter space for ρ being bound between 0 and 1
for row-normalised weights matrices. This is consistent with the standard as-
sumptions for the productivity parameter in the knowledge production function
(Abdih and Joutz, 2006). Other R&D inputs are proxied by focusing on R&D
investment.

The suggested modelling approach allows for testing for threshold e�ects in
the impact of human capital on the productivity of R&D inputs and knowledge
spillovers. Hence, the empirical model is based on the threshold speci�cation of
the structural model as stated in Eq. (7) in Section 2. It explains innovation
outcomes, Ȧ, in terms of R&D investment, R, and knowledge spillovers, WȦ,
which are conditioned by the level of absorptive capacity, LA, as well as a set
of control variables, C,

log Ȧ = α+ β logH + ρH≤γ logWȦH≤γ + ρH>γ logWȦH>γ (8)

+λH≤γ logRH≤γ + λH>γ logRH>γ + logCθ + u.

Hence, the two R&D input variables are split into two regimes, each based
on whether absorptive capacity is below or above the endogenously estimated
threshold value, γ.
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3.2 Data and choice of variables

The data comprises 251 European regions covering the 27 members of the Euro-
pean Union, hence including the 10 New Member States that joined the Union
in 2004. The regions are de�ned according to the Nomenclature of Territorial
Units for Statistics (NUTS) at the second highest level of aggregation (NUTS
2) except for Belgian regions and London which are aggregated to the highest
level (NUTS 1). The data has been obtained from the Statistical O�ce of the
European Communities, Eurostat. All data refers to the year 20072, except
indicated otherwise.

For calculating the spatial lag, a weights matrix has been employed that
attributes equal weights to the 11 nearest neighbours of a region. The latter
are obtained from calculating inverse distances between centroids of the regions
in the sample. This procedure was chosen since it minimises the impact of
location at the borders of the sample. It implies that an epidemic model of
knowledge di�usion is assumed. However, criticism voiced by advocates of hier-
archical models (Caniels, 1996) is accounted for by including absorptive capacity
in the model and thus, explicitly considering the readiness of regions for using
knowledge spillovers. According to the convention, the weights matrix has been
row-normalised.

Innovation outcomes are measured by means of patents per capita. Patent
data refers to a very common proxy for innovation output (Griliches, 1990).
Nonetheless, it is an intrinsically imperfect measure due to its narrow focus on
innovation output that can be standardised (Griliches, 1990). Often this kind of
innovation is conducted by relatively sizable �rms (Caragliu and Nijkamp, 2011).
Moreover it is much more common in manufacturing than in services (Hipp and
Grupp, 2005). However, it may be argued that patents constitute the best
available measure of innovation that is �rmly grounded in economic literature.
In order to smoothen the data and to avoid capturing outliers, we calculated an
average of patents per million inhabitants from 2006 and 2007. Table 1 indicates
the existing disparities in innovation performance among European regions.

R&D investment is measured by gross expenditure on R&D as a percentage
of GDP and thus, covers all sectors: business, government, higher education and
private non-pro�t R&D. It is a standard measure, widely applied in academic
literature as well as in policy-making. It has been lagged by two years in order
to account for time lags in the R&D process.

Knowledge spillovers are measured in terms of the spatial lag of patent-
ing outcomes in neighbouring regions. Credibly measuring knowledge spillovers
has been a profound challenge ever since the onset of the related literature
(Krugman, 1991b). Drawing upon the spatial lag refers to an alternative that
is measuring knowledge which is theoretically available to a region. It is pre-
cisely not capturing externally generated knowledge that is actually used by
the recipient region. However, not accounting for the actual use of knowledge

2Since the estimation approach is essentially cross-sectional, potential cyclical e�ects can-

not be accounted for. Extending the framework to longitudinal data would be an interesting

area for future research, but might be severely restricted by data shortages.
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Mean Standard
devia-
tion

Minimum NUTS code
and name of

region
(minimum)

Maximum NUTS code
and name of

region
(maximum)

Patents per
capita (million
inhabitants)

78.948 99.806 0.181 RO31 -
Sud-Muntenia

530.184 DE11 -
Stuttgart

R&D
investment

1.372 1.557 0.080 BG32 - Severen
tsentralen;
PL33 -

Swietokryzskie

5.760 DE91 -
Braunschweig

Knowledge
spillovers

100.854 90.790 1.300 RO32 -
Bucuresti -

Ilfov

408.672 DE14 -
Tübingen

Labour in
research

0.425 0.431 0 GR22 - Ionia
Nisia; GR25 -
Peloponnisos;
GR42 - Notio

Aigaio

2.490 DK01 -
Hovedstaden

Higher
education

73.402 13.310 21.470 PT16 - Centro
(PT)

96.690 CZ01 - Praha

High-tech
manufacturing

6.459 3.619 0.760 ES70 -
Canarias (ES);
GR41 - Voreio
Aigaio; GR42 -
Notio Aigaio;
GR43 - Kriti

21.220 DE11 -
Stuttgart

GDP per
capita

18331.871 7383.025 3400.000 RO21 -
Nord-Est

48800.000 BE1 - Région
de Bruxelles-
Capitale /
Brussels

Hoofdstedelijk
Gewest

Table 1: Descriptive statistics.
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spillovers is explicitly intended in this framework since the latter would al-
ready convey information about a region's capacity to bene�t from externally
generated knowledge. Hence, it would measure both available knowledge and
absorptive capacity while the analysis in this paper endeavours to single out the
in�uence of the latter. Another advantage of this measure is that it is more
direct in nature than looking at spatially lagged R&D investment, which is also
frequently used for capturing externally generated knowledge. The spatial lag
is calculated from lagged values of patenting referring to an average of the years
2004 and 2005, since it is considered intuitive that knowledge spillovers only
a�ect innovation with a time lag. Similarly to innovation, R&D investment and
knowledge spillovers are also characterised by signi�cant heterogeneity between
European regions (Table 1).

In terms of control variables, sectoral structure and the stage of economic
development of a region are considered. Accounting for sectoral structure is
important in order to disentangle the innovation performance of a region from
economic structures that tend towards more innovation-prone and in partic-
ular, more patent-intensive sectors. Employment in high and medium high-
technology manufacturing as a percentage of total employment is used as a
measure of sectoral structure. This segment of the economy is expected to gen-
erate a relatively large share of patents compared to other sectors. The stage of
economic development of a region is captured by including GDP measured in
purchasing power parities per capita in 2000 among the control variables. It is
�rmly established that innovative capacity is dependent on the stage of develop-
ment (Audretsch, 1998). Hence, accounting for the latter is important, since we
would like to empirically model the impact of the determinants of innovation,
independently of the stage of development of the respective region.

Absorptive capacity is intrinsically hard to measure. Human capital is widely
acknowledged as an in�uential factor contributing to the absorption of knowl-
edge (Rodríguez-Pose, 2001). We use two standard measures of human capital.
Drawing on labour in research for capturing human capital has explicitly been
suggested in theory (Romer, 1990) and is also frequently used in applied work.
It is measured in terms of R&D personnel (in full-time equivalents) as a percent-
age of the active population. Due to better data availability, we focus on R&D
personnel in the business sector. Schooling refers to a widely acknowledged
constituent of human capital (Lucas, 1988). We measure schooling in terms of
the percentage of the active population who pursued higher education (ISCED
level 3 to 6). Table 1 on page 7 shows that the sample is strongly heterogeneous
regarding human capital.

The decision to use two di�erent human capital measures is based on the-
oretical uncertainties regarding the behaviour of the applied sample splitting
estimator when the threshold variable is included among the regressors. Hansen
(2000) remarked that the latter might behave in a way that is comparable to the
impact of trends in changepoint models and that the distribution for such esti-
mates has not been determined yet. In explorative analyses, we �nd that human
capital variables that tend to be strongly related to each other, both regard-
ing their substance and statistical properties, i.e. correlation, tend to produce
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insigni�cant direct human capital e�ects when being applied as threshold vari-
ables. Due to the mentioned theoretical uncertainties, we are, however, not sure
whether the latter refers to a substantial result or only a statistical artefact. For
prudence, we use two di�erent measures for capturing the direct and indirect
human capital e�ect that are not characterised by excessive correlation.

4 Estimation strategy and econometric method

For estimating the model, the endogenous sample splitting framework developed
by Hansen (1999, 2000) is applied to a spatial autoregressive model structure.
The general version of Hansen's threshold model allows for one or several re-
gressors, here x1, to a�ect the dependent variable in a regime-speci�c fashion.
The sample split depends on whether another variable q, henceforth threshold
variable, exceeds a certain value,

yi = θ0 + θ1,qi≤γx1,iI(qi ≤ γ) + θ1,qi>γx1,iI(qi > γ) +Xjiθj + εi, (9)

for observation i with j = 2, .... This threshold value γ is not arbitrarily chosen
ex-ante, but estimated endogenously according to the following minimisation
criterion

γ̂ = arg min
γ∈Γn

Sn(γ), (10)

with Sn = ε̂(γ)′ε̂(γ) and Γn = Γ
⋂
{q1, ..., qn}. The threshold estimate refers

to the value of the threshold variable that minimises the concentrated sum of
squared errors function obtained by least-squares regression of y on X condi-
tional on the threshold value.

Hansen (2000) developed the asymptotic distribution theory for the thresh-
old and slope estimates. The threshold estimate asymptotically follows a non-
standard distribution and requires the assumption that the di�erence between
the coe�cients of the split variables decreases to zero as the sample size ap-
proaches in�nity. Once the threshold estimate has been determined, Hansen
(2000) shows that the slope coe�cients can be estimated by standard estima-
tion techniques as if the estimated threshold value was the true threshold. As
suggested by Hansen (1999, 2000), the sample is trimmed to ensure that at
least 20% of the sample, i.e. 25 regions, fall inside any regime in order to avoid
capturing outliers.

Determining the statistical signi�cance of the threshold estimate involves
testing the hypothesis

H0 : θqi≤γ = θqi>γ . (11)

Doing this is complicated by the fact that the threshold value is not identi�ed
under H0. Hansen (1999) suggests a bootstrap procedure based on a simple
likelihood ratio (LR) statistic,

F1 = n
(S0 − S1(γ̂))

S1(γ̂)
(12)
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with S0 denoting the sum of squared errors of the null model and S1(γ̂) rep-
resenting the sum of squared errors from of the alternative model. It follows
a non-standard distribution. Bootstrapped p-values are asymptotically valid.
The procedure is implemented by �xing the explanatory variables and then,
sampling residuals from the alternative model. These draws are used for creat-
ing a bootstrap sample under the null hypothesis. The parameters from the null
model are used for generating the bootstrap dependent variable, although the
test statistic does not dependent on these values. On the basis of the estimated
null and alternative model, the test statistic is calculated and simulated 1000
times. The bootstrapped p-value under H0 refers to the percentage of draws for
which the simulated statistic exceeds the true value.

In a similar fashion, a single threshold model can be evaluated against a
multiple split alternative. The only di�erence involves that the test statistic
depends on the parameters used for constructing the bootstrap sample and
thus, Hansen (1999) cautions against placing undue con�dence in its results. A
graphical indication of the relevance of an additional sample split may also be
obtained from the plot of the true LR statistic.

The con�dence interval for the threshold estimate can be derived from a
similar LR statistic,

LR1(γ) = n
(S1(γ)− S1(γ̂))

S1(γ̂)
. (13)

Since its distribution is non-standard, critical values c(α) are not tabulated and
have to be calculated from the distribution of the LR statistic. The 5% critical
value is 7.35. The con�dence interval at the 1 − α con�dence level includes all
values of the threshold estimate for which LR1(γ) ≤ c(α).

For the intended application, Hansen's threshold estimation approach is sub-
jected to a spatial autoregressive model structure. From a methodological point
of view, the inclusion of Hansen's threshold condition in Eq. (10) into spatial
econometric estimation techniques requires, inter alia, splitting the spatial de-
pendence parameter in two (or more) regimes, ρH≤γ and ρH>γ . Since we use a
non-standard methodology, the behaviour of the spatial threshold estimator was
simulated. The simulations were conducted using the empirical weights matrix
and a parameter space that corresponds to the empirical reality. Contrary to
the intuition from the generic spatial autoregressive model, the �rst simlation
results as well as theoretical deliberations cast doubt on the appropriability of
the standard estimators, spatial two-stage least squares (S-2SLS) and spatial
maximum likelihood (S-ML).

S-2SLS implies large biases in the threshold estimate for high levels of spatial
dependence. This bias in S-2SLS becomes signi�cantly more serious for smaller
sample sizes. In order to explain these �ndings, it is conjectured that the instru-
mentation stage of S-2SLS does not fully capture the implied spatial dynamics
which causes the error term to be biased. The endogenous estimation of the
threshold estimate, however, crucially relies on the error to re�ect the degree to
which the sample split re�ects the true data structure. The biased �rst stage of
S-2SLS precisely implies that the size of the overall error is not proportional to
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the sample split error anymore.
Similarly, S-ML is found to be a less suitable estimator, both on the basis of

theoretical deliberations and the simulation results. Recent �ndings suggest a
potential inconsistency of the S-ML estimator in the presence of heteroskedas-
ticity (Lin and Lee, 2010). Sources of heteroskedasticity in a spatial context
include heterogeneity of the spatial units, i.e. regarding their size, as well as
the dependence of the error term on the sample size due to the presence of the
spatial multiplier, u = (1 − ρW )−1ε. It might be intuitive that such spatial
heteroskedasticity issues might even be aggravated by sample splitting. With
the help of an adapted version of White's test (White, 1980), the relevance of
heteroskedasticity can, indeed, be shown in simulations.

A potential remedy might be found in adapting Lee (2003)'s best spatial
2SLS estimator (BS-2SLS) to account for Hansen's sample splitting criterion.
Hence, the following instrument matrix is used,

H = [α,X,WS]

with S =

{
(1− ρ̃qi≤γW )−1X if qi≤ γ
(1− ρ̃qi>γW )−1X if qi>γ

and ρ̃ being an estimate from a pre-

liminary S-2SLS regression. It captures the full spatial dynamics and should
therefore avoid a spatial omitted variable bias in the error term. Consistency is
not a�ected by potential heteroskedasticity. Nonetheless, we use Huber-White
variance estimators (White, 1980) for prudence. It is, indeed, found that the
BS-2SLS estimator e�ectively minimises bias in the estimation of the thresh-
old value. Moreover, it provides for precise estimates of the spatial dependence
parameters and control variable coe�cients.

Interestingly, the simple spatial ordinary least-squares (S-OLS) estimator
is characterised by a very favourable performance in estimating the threshold
value, in particular regarding its root mean squared error. Its drawbacks result
from the conventional endogeneity issue of S-OLS resulting in overestimation of
the spatial dependence parameters. However, in this paper's application, endo-
geneity might be mitigated by the fact that the spatial lag is calculated from
time-lagged values of the dependent variable. Nonetheless, signi�cantly higher
estimates of the spatial dependence parameters are observed for S-OLS com-
pared to the BS-2SLS estimates suggesting potential overestimation. In Section
5, only the results from BS-2SLS estimation are reported. S-OLS estimates
are provided in column (1) in Table 7 on page 27 in the appendix. Detailed
simulation results can be obtained upon request from the author.

Calculating standard errors for the estimated spatial e�ects requires ap-
proximating the nonlinear function which arises from the presence of the spatial
multiplier. This is done by applying the delta method which is based on de-
termining the asymptotic variance of a �rst-order Taylor series approximation
around the estimated parameter values (Franzese and Hays, 2007).
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5 Estimation results

This section will provide an overview of the estimation results. It is structured
as follows. Section 5.1 analyses and derives the main insights from the coe�cient
estimates. True spatial e�ects are treated in Section 5.2. The sample split is
discussed in Section 5.3. Section 5.4 derives policy implications from the �ndings
of the previous sections. Finally, Section 5.5 considers multiple thresholds while
Section 5.6 provides additional robustness checks.

5.1 Analysis of the coe�cient estimates

The estimated coe�cients suggest that R&D investment and knowledge spillovers
have a signi�cant impact on innovation performance, independently of the ab-
sorptive capacity regime. Moreover, the estimated threshold value is signi�cant.
These results are shown in column (1) in Table 2. Hence, human capital seems to
not only in�uence innovation as a direct determinant, but also indirectly via its
absorptive capacity character which impacts on the productivity of R&D invest-
ment and knowledge spillover assimilation. This �nding suggests the empirical
relevance of indirect human capital e�ects.

The size of the parameter estimates in column (1) in Table 2, however,
strongly depends on the absorptive capacity regime. They are signi�cantly
higher for advanced absorptive capacity areas than for those regions lacking
strong absorptive capacity endowments. Hence, innovation outcomes will also
be stimulated by increases in R&D inputs in low absorptive capacity regions,
albeit much less e�ectively than in more advanced areas. This may negatively
a�ect the economic rationale for conducting R&D in regions with inadequate
absorptive capacity endowments. Policy intervention targeting improvements in
absorptive capacity may, thus, be more bene�cial in lagging regions than heavily
committing to direct R&D investments. As soon as a critical level of absorptive
capacity is attained, R&D investments and knowledge spillovers are likely to
yield signi�cantly higher returns. Hence, improvements in absorptive capacity
may have signi�cant consequences for making R&D investment, particularly in
lagging areas, economically more attractive.

Moreover, we can show that indirect absorptive capacity-induced human
capital e�ects are empirically relevant, controlling for the direct impact of hu-
man capital. The latter is substantially lower for the proposed model than in
the non-split speci�cation without absorptive capacity e�ects in column (2) in
Table 2. This �nding may suggest that, in such standard speci�cations, the
absorptive capacity function of human capital e�ect is at least partly subsumed
into the direct human capital e�ect without, however, revealing the mechanism
of its impact via in�uencing the e�ectiveness of knowledge spillover assimilation
and R&D investment. Hence, the proposed model allows for demonstrating that
these two structurally di�erent human capital e�ects empirically exist next to
each other and are of signi�cant relevance. Moreover, the estimation approach
ascertains that absorptive capacity is a prerequisite and not only a comple-
mentary asset for achieving improvements in R&D productivity and innovation
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(1)
Knowl-
edge

spillovers
and R&D
invest-
ment
subject
to sample
splitting

(2)
Non-split
model

(3)
Knowl-
edge

spillovers
subject
to sample
splitting

(4) R&D
invest-
ment
subject
to sample
splitting

(5)
Thresh-
old

variable:
schooling

Knowledge spillovers - low
absorptive capacity regime

0.213
(0.072)***

0.267
(0.060)***

0.300
(0.048)***

Knowledge spillovers - high
absorptive capacity regime

0.368
(0.049)***

0.368
(0.048)***

0.410
(0.052)***

R&D investment - low
absorptive capacity regime

0.301
(0.101)***

0.437
(0.098)***

0.380
(0.091)***

R&D investment - high
absorptive capacity regime

0.521
(0.067)***

0.542
(0.069)***

0.401
(0.100)***

Knowledge spillovers - entire
sample

0.335
(0.049)***

0.371
(0.045)***

R&D investment - entire
sample

0.504
(0.063)***

0.462
(0.059)***

Human capital 0.599
(0.200)***

0.731
(0.165)***

0.666
(0.184)***

0.708
(0.165)***

0.111
(0.061)*

High-tech manufacturing 0.237
(0.067)***

0.260
(0.066)***

0.223
(0.070)***

0.239
(0.066)***

0.192
(0.096)**

Initial GDP per capita 1.437
(0.158)***

1.463
(0.160)***

1.363
(0.162)***

1.410
(0.152)***

1.389
(0.174)***

Constant -14.823
(1.882)***

-15.565
(1.806)***

-14.305
(1.899)***

-15.070
(1.728)***

-11.503
(1.667)***

Threshold estimate 0.110** 0.160a 0.140b 76.400c

Con�dence interval - lower
bound

0.090 0.10 0.09 75.900

Con�dence interval - upper
bound

0.170 0.260 0.650 78.900

Observations - low absorptive
capacity regime

63 79 71 134

Observations - high
absorptive capacity regime

188 172 180 117

Observations - entire sample 251 251 251 251 251
R-squared 0.894 0.891 0.895 0.895 0.895

aSigni�cance tests have not been performed for these estimates.
bSigni�cance tests have not been performed for these estimates.
cSigni�cance tests have not been performed for these estimates.

Table 2: Coe�cient estimates. Standard errors in parentheses; *** Signi�cance
at the 1% level; *** Signi�cance at the 5% level.
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performance.
The coe�cient estimates for the control variables are highly signi�cant in all

speci�cations in Table 2, as well, and carry the expected signs and magnitudes.
These �ndings are con�rmed when knowledge spillovers and R&D invest-

ment are split in separate regressions. As expected, the direct human capital
e�ect is once again stronger picking up part of the indirect e�ect that the respec-
tive speci�cation does not account for. In column (3) of Table 2, for example,
the e�ectiveness of R&D investment is not conditioned on absorptive capacity
endowments and we observe a direct human capital e�ect that is more than
10% higher than for the reference speci�cation in column (1). Moreover, the
non-split coe�cient estimate for R&D investment in column (3) is much closer
to the parameter estimate for the high absorptive capacity regime in column (1).
This is intuitive, since the latter is substantially bigger than the low absorptive
capacity regime. Hence, the sample is driven by regions with relatively strong
absorptive capacity endowments. If the threshold e�ect was not accounted for,
divergent R&D productivity patterns in the European periphery would, thus,
be masked. The estimated threshold values as such are very similar for the
speci�cations in columns (1), (3) and (4), although con�dence intervals tend to
be wider when sample splitting is performed separately for knowledge spillovers
and R&D investment.

Furthermore, we can con�rm the substantive results when the human capital
measures that are used for capturing the direct and indirect e�ects are inter-
changed (column (5) in Table 2). The estimated threshold values are again
very similar to the original speci�cation, although we observe that the di�er-
ences between the resulting regimes are less pronounced, in particular for R&D
investment.

For all the models, we cannot observe any signi�cant di�erences in R-squared.
However, it is conjectured that the threshold models in columns (1), (3), (4)
and (5) extend the results from the non-split speci�cation in column (2) and
thus, help providing a more informative approximation of the empirical reality
of knowledge production.

It has to be taken into account that all the results that have been discussed
so far characterise the prespatial impetus of R&D investment and knowledge
spillovers on innovation only. True spatial e�ects will be presented in the next
section.

5.2 Analysis of the spatial e�ects

Spatial e�ects estimates do not only consider the immediate internal impact of
a policy change in a certain region, but capture the spatial feedback through
spillovers from direct and indirect neighbouring areas into region i. As already
described in Section 2, theory suggests that absorptive capacity is crucial for
being able to bene�t from such spatial dynamics. The spatial sample splitting
model allows for testing this theoretical proposition empirically. The relevance
of spatial interdependence is suggested, inter alia, by the fact that the average
spatial e�ects of an increase in R&D spending exceed the coe�cients of the
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(1) Average
e�ect

(2)
Minimum
e�ect

(3)
Maximum
e�ect

(4) Average
e�ect - low
absorptive
capacity
regime

(5) Average
e�ect - low
absorptive
capacity
regime

Spatial e�ects on
region i

0.472 0.302 0.531 0.303 0.527

Region i ITG2 -
Sardegna

UKD3 -
Greater

Manchester
Prespatial
coe�cient

0.301 0.521

Table 3: Spatial e�ects on region i.

prespatial impetus. This is the case independently of the absorptive capacity
regime (column (4) and (5) in Table 3). Hence, a positive impact of spatial
spillovers can be con�rmed.

The spatial e�ects of R&D investment tend to be lowest in the geographic
periphery of Europe, i.e. in Sardinia in Italy (column (2) in Table 3). The
highest ceteris paribus impact from increased R&D spending is reaped in the
Greater Manchester region (column (3) in Table 3). This result is intuitive
since Manchester region represents both a relatively strong innovator itself and
may also strongly bene�t from signi�cant positive spillovers from surrounding
regions, in particular from London.

In the next step, the size of the spatial e�ects of changes in region i on its
neighbouring regions and in particular, on the most strongly a�ected neigh-
bouring region j, are analysed. The estimation results in column (1) in Table
4 suggest that spatial dynamics cause about 4.3% of a given rise in R&D in-
vestment in region i to spill over to region j on average. This �gure includes
spatial feedback on region i. This spillover e�ect, however, notably depends on
absorptive capacity endowments. The average e�ect on region j corresponds to
2.5% of the original spatial e�ect on region i if the latter belonged to the low
absorptive capacity regime (column (2) in Table 4). This number rises to 4.6%
of the impact on region i if the latter was characterised by absorptive capacity
levels exceeding the critical threshold value (column (3) in Table 4). Since rel-
ative magnitudes are considered, this observation abstracts from the fact that
the original spatial e�ect on region i tends to be lower in regions with weak
absorptive capacity endowments.

Finally, the geographical reach of spatial spillovers is analysed by examining
the number of region i's neighbouring regions that are a�ected by a change
in R&D investment in region i and where this spillovers e�ect is statistically
signi�cant at the 5% level. On average, the latter refers to 19 regions (column
(1) in Table 4) con�rming that also indirect spillovers exceeding a region's direct
vicinity are of importance, since the spatial weights matrix considers only 11
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(1) Average
e�ect

(2) Average
e�ect - low
absorptive
capacity
regime

(3) Average
e�ect - high
absorptive
capacity
regime

(4)
Minimum
e�ect

(5)
Maximum
e�ect

Ratio of spillover
e�ect to region j to
original spatial
e�ect on region i

4.285% 2.525% 4.613%

Number of
signi�cantlya

a�ected regions

18.896 3.431 24.074 0 39

Region i Several
Bulgarian,
Greek and
Slovak
regionsb

FR51 -
Alsace

aP-value ≤0.05
bSpeci�cally, BG31 � Severozapaden; BG32 - Severen tsentralen; BG34 � Yugoiztochen;

BG42 - Yuzhen tsentralen; GR11 - Anatoliki Makedonia, Thraki; GR22 - Ionia Nisia; SK03 -

Stredné Slovensko; SK04 - Východné Slovensko

Table 4: Spatial e�ects on neighbouring region j.
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direct neighbours. Traditionally peripheral regions in Bulgaria, Greece and
Slovakia do not a�ect other areas in a signi�cant fashion via spatial spillovers
(column (4) in Table 4) while in comparison, policy changes in very centrally
located and more innovative regions such as Alsace in France spill over much
more widely. The latter signi�cantly in�uence 39 direct and indirect neighbours
(column (5) in Table 4).

Moreover, by comparing the �gures in column (2) and (3) in Table 4 we
can see that regions which are characterised by strong absorptive capacity en-
dowments signi�cantly in�uence a substantially higher number of neighbouring
areas on average than regions in the low absorptive capacity regime. The lat-
ter impact only 3 neighbouring regions on average while spillovers from high
absorptive capacity areas signi�cantly a�ect 24 regions on average.

Hence, Table 4 shows that both the substantive magntitude (�rst row) and
the geographical impact (second row) of spillovers strongly depend on absorptive
capacity. Consequently, it is suggested that location in the vicinity of regions
which themselves are better equipped for absorbing external knowledge increases
both the likelihood of being exposed to knowledge spillovers as well as their
magnitude. Consequently, not only a region's internal endowment matters for
the e�ective assimilation of spillovers, but also the level of absorptive capacity
of its neighbouring areas.

5.3 Analysis of the sample split

The estimated spatial threshold model predicts a typical core-periphery split.
It is depicted in the left-hand map in Figure 4. The light grey colour depicts
those regions falling into the low absorptive capacity regime while the dark grey
colour indicates regions that are characterised by absorptive capacity endow-
ments above the critical threshold. What is conventionally denoted to be the
core of Europe largely overlaps with the high absorptive capacity regime that
implies high R&D productivity rates. The European periphery, on the other
hand, constitutes the low absorptive capacity regime, including mainly Eastern
and Southern European regions, except capital areas.

These results are robust to dropping those observations from the sample
that fall inside the con�dence interval around the threshold estimate which are
indicated by the light grey colour in the right-hand map in Figure 1. Moreover,
the �ndings can be con�rmed when splitting R&D investment and knowledge
spillovers separately. In this case, a very similar core-periphery pattern will be
obtained if only knowledge spillovers assimilation is conditioned on absorptive
capacity endowments (Figure 2). As shown in Figure 3, the high absorptive
capacity regime for the case in which only the productivity of R&D investment
is subject to sample splitting seems to be larger compared to the reference model
depicted in Figure 1. When considering the bounds of the con�dence interval
around the threshold estimate, however, we obtain a very similar sample split
again (right-hand map in Figure 3).

This geographical pattern highlights not only the signi�cant disparities be-
tween Northern and Western Europe on the one hand and Eastern and Southern
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Figure 1: Maps of the sample split.

Figure 2: Maps of the sample split - knowledge spillovers s.t. sample splitting.

Figure 3: Maps of the sample split - R&D investment s.t. sample splitting.
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Europe on the other hand, but also con�rms the substantial internal heterogene-
ity of lagging areas. The capital cities of Eastern and Southern European coun-
tries, in particular, tend to perform signi�cantly better than the rest of these
countries. These results add to the existing literature in demonstrating that the
relatively low absorptive capacity endowments in Eastern and Southern Euro-
pean regions are not only a descriptive property of these areas, but have a causal
e�ect on innovation by triggering lower productivity rates of R&D investment
and knowledge spillover assimilation.

5.4 Policy implication

If cohesion was a political objective, the policy implication from these �ndings
fundamentally suggests a sequential strategy favouring investments aiming at
fostering absorptive capacity for lagging regions. The latter does not only en-
hance the productivity of making use of knowledge spillovers, but also raises
the e�ectiveness of current and future R&D investments. However, a complete
focus on only stimulating absorptive capacity might imply foregoing innovation
output based on internal R&D e�orts and might risk brain drain of the existing,
though relatively small research community in peripheral regions. The latter is
also consistent with propositions by Cohen and Levinthal (1990) who argue that
R&D investment may not only bene�t from higher absorptive capacity levels,
but may itself contribute to increasing absorptive capacity. In particular, R&D
funding might involve the opportunity for well-trained researchers to learn and
further specialise in a learning-by-doing process. The latter may endow them
with an even greater capacity to transform future R&D investment into inno-
vative output. Moreover, they might be able to assimilate more sophisticated
and cutting-edge external knowledge. However, it has to be kept in mind that
the existing research community might be rather small in peripheral areas, pos-
sibly too small for being able to achieve su�cient productivity for guaranteeing
economic viability of large-scale R&D e�orts at the aggregate level. The lat-
ter relates to notions of scale e�ects in R&D. Hence, an intermediate sequential
strategy might involve discriminating against R&D investment in relatively early
stages of regional human capital development in order to use these resources for
fostering absorptive capacity. Only once human capital levels would be su�-
ciently elevated for the research community to be well endowed with absorptive
capacity would it be e�cient for a region to start investing in R&D at a larger
scale in order to enhance the sophistication of its research endeavours and to
decrease its dependence on external knowledge inputs.

Moreover, the dependence of the spatial e�ects from R&D investment on
both internal and neighbouring areas' absorptive capacity endowments might
have signi�cant consequences for the spatial con�guration of relative regional
development patterns. If the latter turn out to favour divergence between in-
novation centres and lagging areas which would be suggested by the economic
intuition from the results, this might be perceived to be a political issue, de-
pending on whether political agendas focus on cohesion or e�ciency only.
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Figure 4: Maps of the sample split - double split model.

5.5 More than one threshold

We might be interested in examining the e�ect of more than one critical thresh-
old. Indeed, a second sample split is found to be signi�cant. The resulting in-
termediate regime is characterised by an R&D investment coe�cient in column
(1) in Table 5 that comes close to the estimate for the low absorptive capacity
regime in the single split case in column (2) in Table 5. The coe�cient for knowl-
edge spillover assimilation, however, almost equals the parameter estimate of the
single split high absorptive capacity regime. Hence, this intermediate regime is
constituted by regions that are relatively ine�cient in internal knowledge pro-
duction from R&D investment, but that are relatively advanced in e�ectively
absorbing external knowledge and transforming it into innovation output. The
light grey colour in Figure 4 corresponds to this regime. It shows that it is
made up by coastal and Northern Spanish regions except Catalunya and the
Basque country, central Italy, Greek regions surrounding Athens, Greater So�a
and Bratislava, the regions around Warsaw and Krakow, Latvia, Estonia, East-
ern Slovenia and a few lagging regions in Western European countries. These
largely correspond to the emerging dynamic part of the European periphery.

However, as already outlined in Section 4, the signi�cance test for multiple
thresholds is subject to theoretical uncertainties. Further, graphical evidence
from the plot of the LR statistic in Figure 5 on page 28 in the appendix sug-
gests a good �t of the single split model, since the curve does not show any
second major dip besides its tangent point at zero corresponding to the value
of the �rst threshold estimate. We might also question the practical usefulness
of the additional information that can be derived from multiple split models,
especially when considering more than two thresholds. In fact, it is found that
the additional regime that results from a triple split model further splits the in-
termediate regime which has already been rather small in the double split case
resulting in an insigni�cant coe�cient for R&D investment (Table 9 on page 29
in the appendix). This might be attributed to capturing outliers. Moreover,
changes in R-squared are negligible when moving from the single to multiple-
split models. Hence, we �nd a maximum of two useful threshold values and
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(1) Double split model (2) Single split model

Knowledge spillovers - low
absorptive capacity regime

0.235
(0.073)***

0.213
(0.072)***

Knowledge spillovers -
intermediate absorptive

capacity regime

0.368
(0.051)***

Knowledge spillovers - high
absorptive capacity regime

0.395
(0.049)***

0.368
(0.049)***

R&D investment - low
absorptive capacity regime

0.298
(0.102)***

0.301
(0.101)***

R&D investment - intermediate
absorptive capacity regime

0.360
(0.146)**

R&D investment - high
absorptive capacity regime

0.519
(0.085)***

0.521
(0.067)***

Human capital 0.593
(0.194)***

0.599
(0.200)***

High-tech manufacturing 0.218
(0.067)***

0.237
(0.067)***

Initial GDP per capita 1.390
(0.161)***

1.437
(0.158)***

Constant -14.374
(1.889)***

-14.823
(1.882)***

First threshold estimate 0.110** 0.110**
Second threshold estimate 0.310***

Observations - low absorptive
capacity regime

63 63

Observations - intermediate
absorptive capacity regime

66

Observations - high absorptive
capacity regime

122 188

Observations - entire sample 251 251
R-squared 0.897 0.894

Table 5: Coe�cient estimates for double split model. Standard errors in paren-
theses; *** Signi�cance at the 1% level; *** Signi�cance at the 5% level.
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would have a preference for the simpler model. Abstracting from the exact
number of thresholds, the main message that can be derived from the suggested
model refers to the causal relevance of regional di�erences in absorptive capacity
endowments for e�cient regional innovation systems which can be empirically
demonstrated by means of the suggested spatial endogenous sample splitting
estimator.

5.6 Robustness and adequacy of the model speci�cation

A critical argument for demonstrating model adequacy refers to the signi�cance
of the threshold estimate. For this purpose, the bootstrap signi�cance test as
described in Section 4 is applied. It tests the null hypothesis of a linear, non-
split speci�cation. As denoted in Table 2 on page 13, the estimated threshold
value is found to be statistically signi�cant. Hence, the hypothesis of a linear
model of innovation performance is rejected.

Since the proposed model nests the conventional speci�cation considering
only direct human capital e�ects, it allows for obtaining the standard results
regarding the role of human capital. Furthermore, it o�ers additional informa-
tion about the determinants of innovation and in particular, about the channels
of how they impact on innovation output.

Moreover, the endogenous sample splitting regression method provides for
identifying the model speci�cation that implies the smallest sum of squared er-
rors compared to sample splits based on any other observations of the threshold
variable. This refers to an important strength of the approach, since any other
way of splitting the sample based on the same threshold variable in an empir-
ically reasonable range would result in explaining less of the observed pattern
of innovation performance. Hence, if the objective was to provide a model that
explains empirically observed innovation outcomes and their geographical pat-
tern as precise as possible, we would be con�dent of having identi�ed a strong
model.

Finally, the speci�cation of the spatial weights matrix refers to the principal
exogenous choice related to the model setup. Moreover, it cannot be strictly
guided by theoretical deliberations which distinguishes it from other modelling
decisions such as choice of variables. However, the results are very robust against
the choice of the spatial weights matrix. The principal alternative to using
equal weights for n nearest neighbours as in the proposed speci�cation refers
to de�ning the size of the weights directly in terms of inverse distances and
applying a maximum distance threshold for region j to qualify as region i's
neighbour. The latter is set to imply an average number of 14 neighbours per
region. Column (1) in Table 6 shows that replacing the original spatial weights
matrix by the suggested inverse distance matrix only marginally a�ects the
coe�cent estimates.

A similar observation can be made if the two aforementioned methods for
constructing the spatial weights matrix are combined. Therefore, inverse dis-
tance weights are used, but their number is conditioned to be equal for all
regions. Moreover, we vary the scenario even further by choosing only three
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(1) Model with
inverse distance
weights matrix

(2) Model with
n nearest
neighbours

inverse distance
weights matrix

(3) Original
model with n

nearest
neighbours

equal weights
matrix

Knowledge spillovers - low
absorptive capacity regime

0.219
(0.078)***

0.221
(0.089)**

0.213
(0.072)***

Knowledge spillovers - high
absorptive capacity regime

0.368
(0.050)***

0.348
(0.056)***

0.368
(0.049)***

R&D investment - low
absorptive capacity regime

0.315
(0.106)***

0.333
(0.107)***

0.301
(0.101)***

R&D investment - high
absorptive capacity regime

0.508
(0.066)***

0.473
(0.070)***

0.521
(0.067)***

Human capital 0.506
(0.188)***

0.529
(0.191)***

0.599
(0.200)***

High-tech manufacturing 0.248
(0.066)***

0.254
(0.067)***

0.237
(0.067)***

Initial GDP per capita 1.416
(0.172)***

1.472
(0.193)***

1.437
(0.158)***

Constant -14.227
(1.955)***

-14.818
(2.130)***

-14.823
(1.882)***

Threshold estimate 0.110a 0.110b 0.110**
Con�dence interval - lower

bound
0.090 0.090 0.090

Con�dence interval - upper
bound

0.170 0.170 0.170

Observations - low absorptive
capacity regime

63 63 63

Observations - high absorptive
capacity regime

188 188 188

Observations - entire sample 251 251 251
R-squared 0.894 0.890 0.894

aSigni�cance tests have not been performed for these estimates.
bSigni�cance tests have not been performed for these estimates.

Table 6: Coe�cient estimates for model with alternative spatial weights ma-
trices. Standard errors in parentheses; *** Signi�cance at the 1% level; ***
Signi�cance at the 5% level
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and hence, a substantially smaller number of direct connections per region than
in the original spatial weights matrix which speci�es 11 nearest neighbours. Re-
sults on the basis of this combined inverse distance-n nearest neighbours matrix
(column (2) in Table 6) are also remarkably similar to the reference case using
the original spatial weights matrix. The estimates of the threshold value are
even identical, independently of which spatial weights matrix is applied.

Hence, the proposed model provides additional information regarding the
human capital- innovation nexus and its spatial implications while allowing for
the standard speci�cation of the knowledge production function to emerge as
the optimal model. Besides this inherent �exibility, we show that the results
from the proposed model are characterised by a remarkable degree of robustness.

6 Conclusion

In this paper, an indirect absorptive capacity-induced channel for explaining
the impact of human capital on innovation is proposed and embedded into the
endogenous growth model. This approach nests the traditional way of modelling
the human capital-innovation link in terms of direct e�ects of human capital.
Beyond that, it allows human capital to assume an absorptive capacity function
by in�uencing the productivity of R&D inputs and knowledge spillovers. In
order to empirically test the relevance of absorptive capacity e�ects of human
capital, a spatial version of endogenous sample splitting is proposed. Moreover,
a series of robustness and model adequacy checks are performed.

The estimated model predicts a typical core-periphery split. The traditional
core of Europe largely overlaps with the high absorptive capacity regime. The
European periphery, on the other hand, constitutes the low absorptive capacity
regime, including mainly Eastern and Southern European regions, except capital
areas. These results add to the existing literature in demonstrating that the
di�erent absorptive capacity endowments across Europe have a causal e�ect
on innovation outcomes by a�ecting the productivity of R&D investment and
knowledge spillover assimilation.

It is shown that these absorptive capacity-induced di�erences in R&D pro-
ductivity patterns in Europe are subject to threshold e�ects. This concerns in
particular the role of absorptive capacity for explaining the relatively weak inno-
vation performance of peripheral areas. The estimation results speci�cally high-
light that innovation outcomes will also be positively stimulated by increases in
R&D inputs in low absorptive capacity regions, albeit much less e�ectively than
in more advanced areas. This may negatively a�ect the economic rationale for
conducting R&D in regions with inadequate absorptive capacity endowments.

Finally, it is found that the spatial e�ects from R&D depend on absorptive
capacity, both concerning their geographical reach and their relative magni-
tude. Hence, regions do not only bene�t from elevated internal levels of ab-
sorptive capacity, but also from favourable absorptive capacity characteristics
of neighboruing areas. This might have important consequences for relative re-
gional development patterns. If cohesion was a political objective, the policy
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implication from these �ndings would fundamentally suggest sequencing of pol-
icy intervention favouring investments aimed at fostering absorptive capacity in
early stages of development of regional innovation systems.
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Appendix

(1) S-OLS estimates (2) BS-2SLS estimates

Knowledge spillovers - low
absorptive capacity regime

0.299
(0.051)***

0.213
(0.072)***

Knowledge spillovers - high
absorptive capacity regime

0.430
(0.042)***

0.368
(0.049)***

R&D investment - low
absorptive capacity regime

0.315
(0.087)***

0.301
(0.101)***

R&D investment - high
absorptive capacity regime

0.532
(0.065)***

0.521
(0.067)***

Human capital 0.597
(0.170)***

0.599
(0.200)***

High-tech manufacturing 0.189
(0.064)***

0.237
(0.067)***

Initial GDP per capita 1.280
(0.140)***

1.437
(0.158)***

Constant -13.436
(1.616)***

-14.823
(1.882)***

Threshold estimate 0.110** 0.110**
Con�dence interval - lower

bound
0.090 0.090

Con�dence interval - upper
bound

0.170 0.170

Observations - low absorptive
capacity regime

63 63

Observations - high absorptive
capacity regime

188 188

Observations - entire sample 251 251
R-squared 0.910 0.894

Table 7: S-OLS estimates. Standard errors in parentheses; *** Signi�cance at
the 1% level; *** Signi�cance at the 5% level.
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Figure 5: Plot of the LR graph of the single split model (entire sample).
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(1) Triple split model

Knowledge spillovers - low absorptive
capacity regime

0.224
(0.071)***

Knowledge spillovers - �rst
intermediate absorptive capacity

regime

0.391
(0.050)***

Knowledge spillovers - second
intermediate absorptive capacity

regime

0.336
(0.054)***

Knowledge spillovers - high absorptive
capacity regime

0.387
(0.047)***

R&D investment - low absorptive
capacity regime

0.303
(0.097)***

R&D investment - �rst intermediate
absorptive capacity regime

0.636
(0.156)***

R&D investment - second intermediate
absorptive capacity regime

-0.360
(0.279)

R&D investment - high absorptive
capacity regime

0.517
(0.085)***

Human capital 0.581
(0.190)***

High-tech manufacturing 0.214
(0.066)***

Initial GDP per capita 1.408
(0.159)***

Constant -14.467
(1.861)***

First threshold estimate 0.110**
Second threshold estimate 0.190
Third threshold estimate 0.310***

Observations - low absorptive capacity
regime

63

Observations - �rst intermediate
absorptive capacity regime

31

Observations - second intermediate
absorptive capacity regime

35

Observations - high absorptive capacity
regime

122

Observations - entire sample 251
R-squared 0.900

Table 9: Coe�cient estimates - triple split model. Standard errors in parenthe-
ses; *** Signi�cance at the 1% level; *** Signi�cance at the 5% level.
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