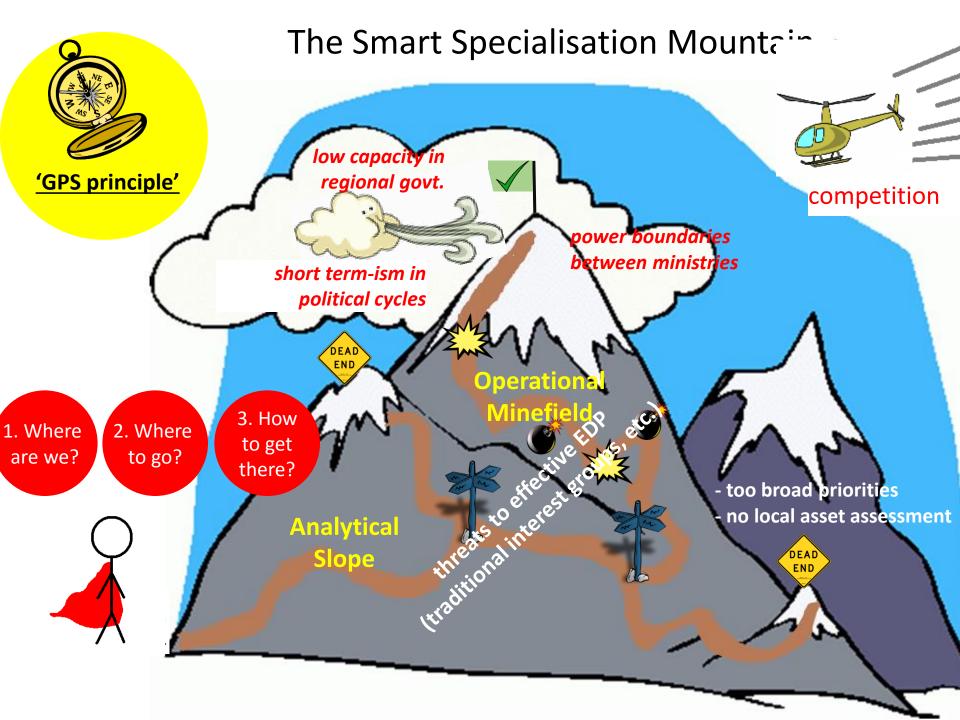


An 'industrial-innovation system' approach to smart specialisation: the case of the agri-tech industry in the East of England

Carlos López-Gómez, David Leal-Ayala, Eoin O'Sullivan Policy Links, Centre for Science, Technology & Innovation Policy (CSTI), University of Cambridge

First SMARTER Conference on Smart Specialisation and Territorial Development, Seville, Spain

Overview


- 1. Key messages
- 2. When 'smart specialisation' is not so smart
- 3. An 'industrial-innovation system' approach to smart specialisation
- 4. Case Study: Agri-tech industry in the East of England
- 5. Conclusions

Key messages

Key messages

- A critical challenge for smart specialisation is to properly characterise what makes a region *distinctive* at a useful level of detail and in a way that is recognised by local as well as external actors.
- However, identified priorities have been too generic and not appropriately connected to regional economic and innovation structures.
- Practice-oriented **analysis frameworks** and **data sources** at an adequate level of disaggregation to support this task are in short supply.
- An **'industrial-innovation system' approach** is proposed to support key analytical tasks involved in smart specialisation.
- The utility of the approach is demonstrated through a selected case study in the agritech industry in the East of England.

When 'smart specialisation' is not so smart

Key strategic questions / analytical challenges to effective smart specialisation

What we want in theory

clearly articulate <u>what makes regions</u> <u>distinctive at a useful level of detail</u> and in a way that is recognised by the local and external stakeholders

use **region distinctiveness as the basis** from which a **limited number of promising opportunity areas** are identified

strategise to ensure that <u>distinctive &</u> <u>competitive capabilities</u> are leveraged in order to pursue <u>promising & feasible</u> <u>opportunities</u>

Collaboration with BEIS

A pilot project has been conducted as a collaboration between the UK Department for Business, Energy & Industrial Strategy (BEIS) and the Policy Links unit of the Centre for Science, Technology & Innovation Policy (CSTI).

The aims was to explore new approaches to enhance the effectiveness of smart specialisation in UK regions.

Case study in the agri-tech industry in the East of England.

Department for Business, Energy & Industrial Strategy

Smart specialisation in the UK?

Department for Business, Energy & Industrial Strategy

Making 'smart specialisation' s

an industrial-innovation system appr

THE CASE OF AGRI-TECH EAST

A report for the UK Department of Business, Innovation & Skills (BIS) Policy Links, Centre for Science, Technology & Innovation Policy (CSTI), University of Cambridge

APRIL 2016

Note: This report was commissioned and completed before the United Kingdom European Union membership referendum of 23 June 2016. While the results of the referendum have important implications for the report, the ideas here presented remain higly relevant to UK regional development policy efforts.

An 'industrial-innovation system' approach to smart specialisation

An 'industrial-innovation system' approach to smart specialisation

- Grounded on the recognition of the structure and dynamics of modern industries and technologies.
- Integrates value chain structure and an explicit distinction between *knowledge generation, knowledge diffusion* and *knowledge absorption* capabilities.
- Simple yet highly structured approach with the potential to guide not only more systematic statistical analyses but also a more effective 'entrepreneurial discovery process'.

The value of the value chain structure

The issue

- Modern industries increasingly cut across sectors and technologies.
- Statistics available to policy makers have not kept up with pace of change (BIS, 2015).
- A number of 'unmeasurable sectors' (e.g. 'app economy') simply not monitored (NAE,2015).
- Aggregated data does not allow identifying niche areas of regional strength.

need to understand industrial activity beyond sector & technology boundaries

The value of the value chain structure

The value chain framework provides a useful structure for smart specialisation analyses:

- holistic perspective and focus on processes of value addition and dynamic linkages between diverse economic actors
- sectoral & technological interdependencies

Processes of value addition Diversity of industrial activities cutting across sectors and boundaries Diversity of actors and interrelated capabilities

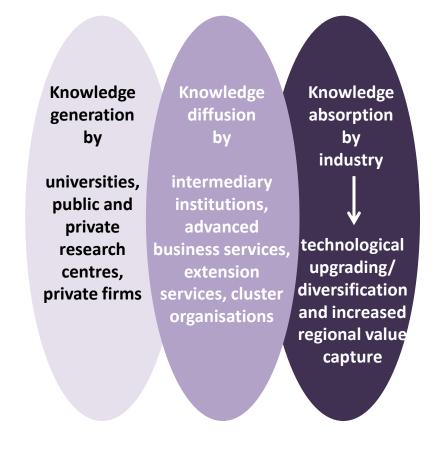
need to understand industrial activity beyond sector & technology boundaries

The value of the value chain structure

The issue

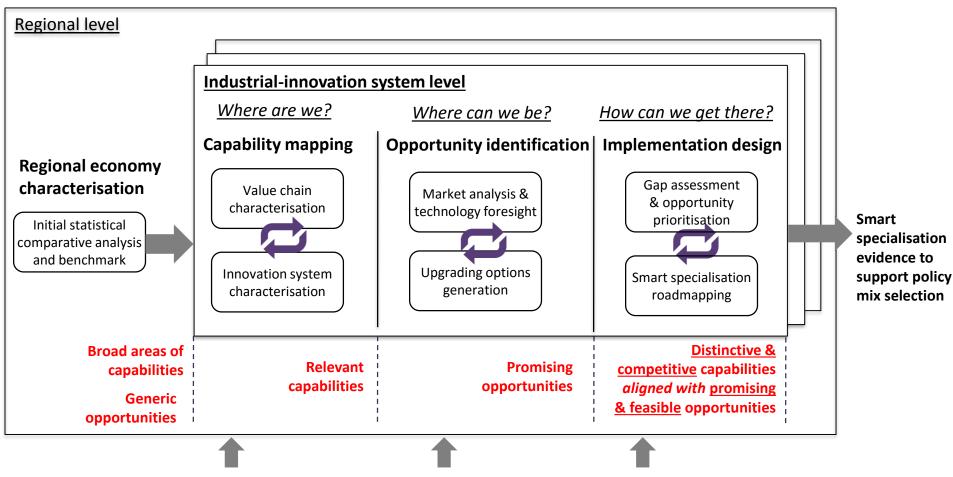
- Excessive focus on R&D not aligned with business opportunities (Foray et. al., 2012).
- Relatively weak focus on absorptive capacity and take up of capacity and take up of existing knowledge and technologies (EC, 2015).
- Lack of emphasis on mechanisms to diffuse knowledge.

need to understand innovation beyond knowledge creation and R&D


Regional innovation system typically understood to be "a set of interacting private and public interests, formal institutions, and other organizations that function according to organizational and institutional arrangements and relationships conducive to the **generation, use, and dissemination of knowledge**" (Doloreux and Parto, 2005).

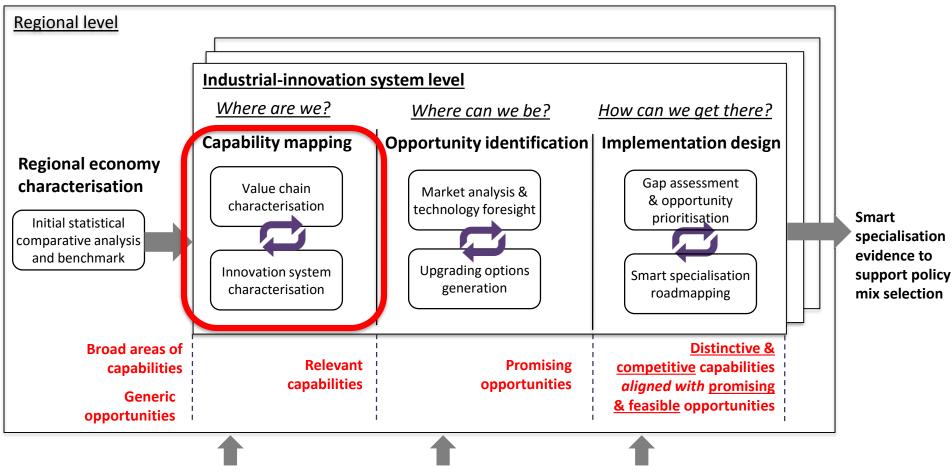
need to understand innovation beyond knowledge creation and R&D

A systemic view of the regional innovation system

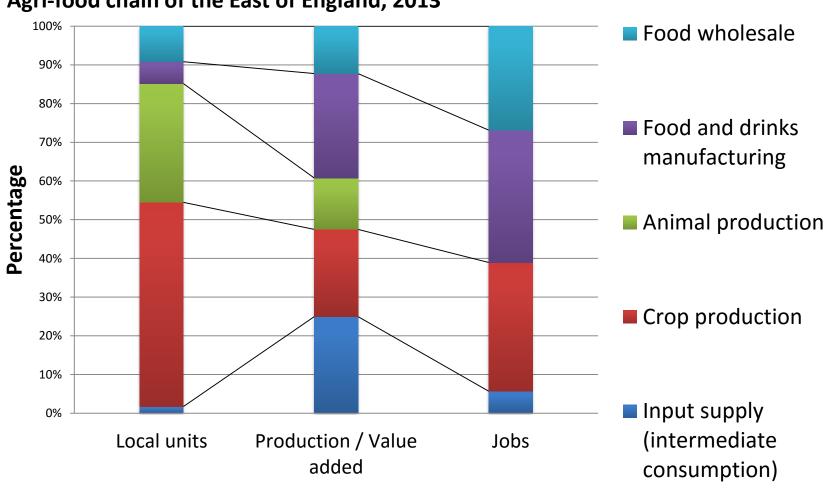

At the most basic level, three types of interrelated innovation system capabilities can be distinguished:

- capabilities to create new knowledge
- capabilities to diffuse knowledge
- capabilities to absorb knowledge

need to understand innovation beyond knowledge creation and R&D


An 'industrial-innovation system' approach to smart specialisation

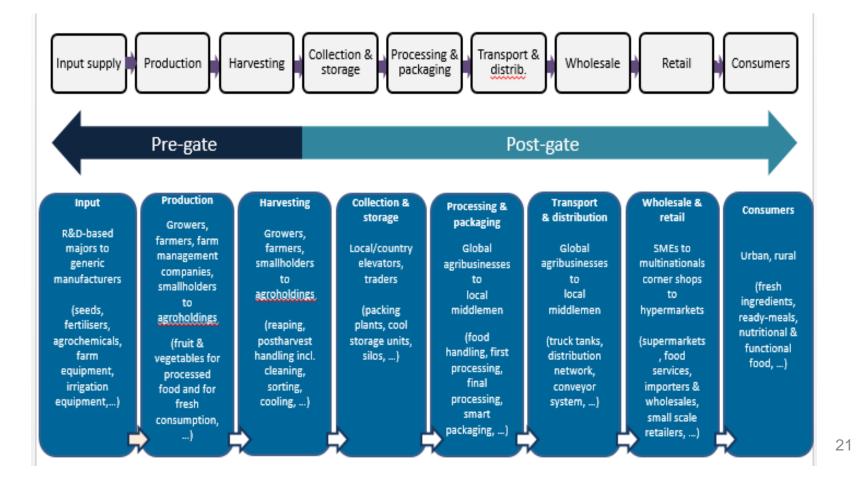
Analytical tasks supported by 'entrepreneurial discovery process'


Case study: agri-tech industry in the East of England

An 'industrial-innovation system' approach to smart specialisation

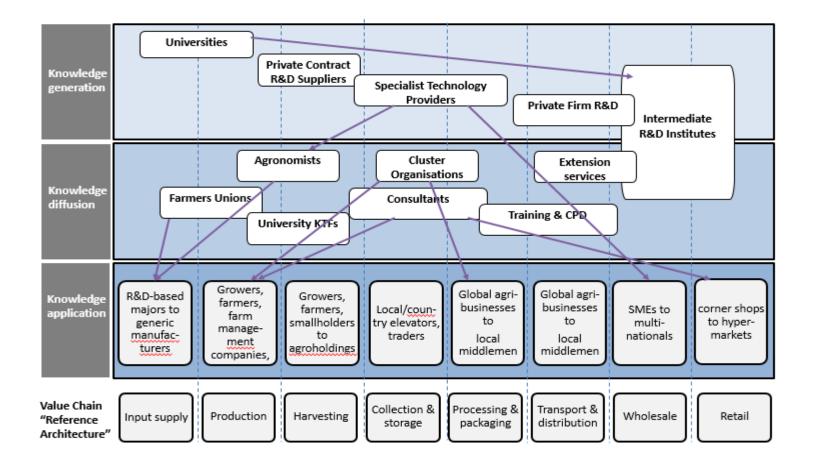
Analytical tasks supported by 'entrepreneurial discovery process'

Value chain capability mapping



Agri-food chain of the East of England, 2013

Key economic riables analysed across the value chain

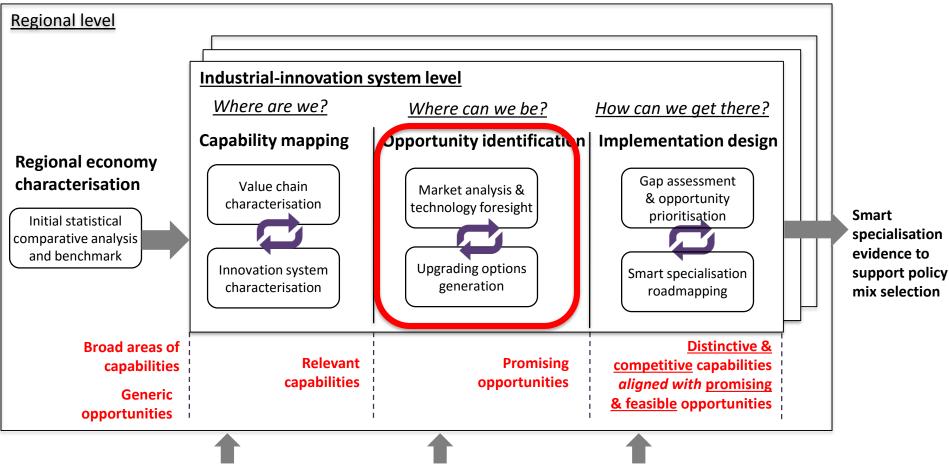

Value chain capability mapping

- Illustration on the whole range and types of stakeholders involved
- Supporting thinking about interrelated capabilities in a structured & dynamic way
- Highlighting linkages between stakeholders with seemingly different industrial interests and technical competencies

Regional innovation system capability mapping

- Systematic review of innovation system capabilities
- Explicit distinction between knowledge generation, diffusion and absorption capabilities; recognition that innovation is more than just R&D
- Careful characterisation of actors, mechanisms and institutions (and their linkages) in the regional innovation system

Regional innovation system capability mapping

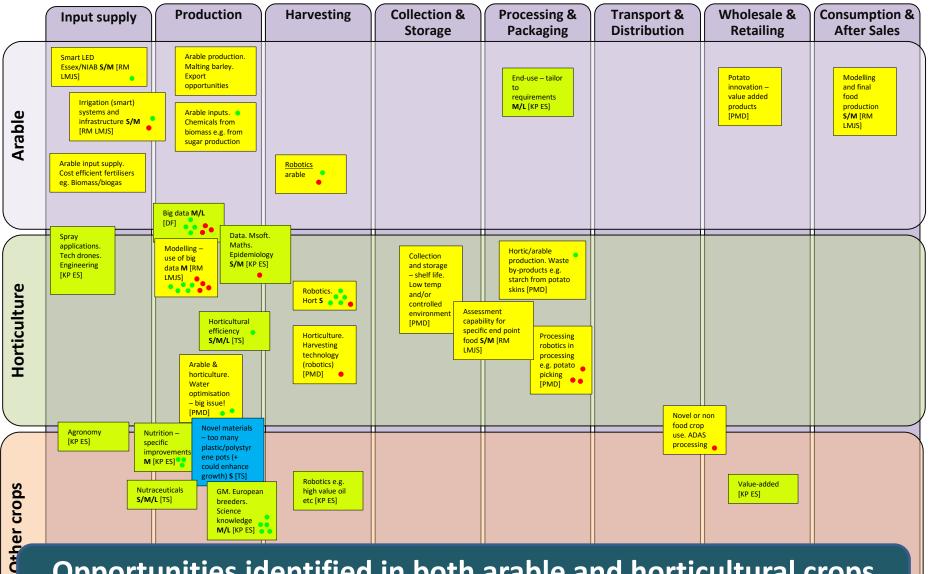

Knowledge generation

Comparison of East of England and other UK regions

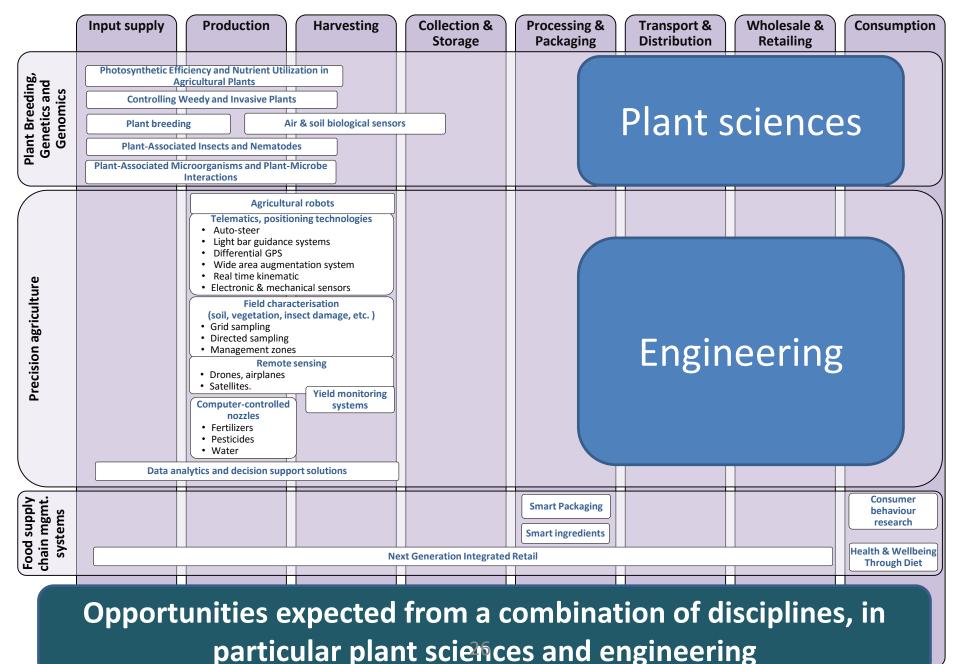
	England	Greater Car Pet	nbridge erborou		He	rtfordsl	nire	Ne	w Ang	lia	So	outh Ea	ist	South	East Mie	dlands	East of En	gland
Indicator	Value	Value	%	Ranking	Value	%	Ranking	Value	%	Ranking	Value	%	Ranking	Value	%	Ranking	Value (Sum / average)	%
Knowledge generation																		
Business Enterprise R&D expenditure (£ millions), 2013	16,838	1,332	7.9	1	1,322	7.9	2	641	3.8	12	957	5.7	9	647	3.8	11	4,899	29.1
Percentage of science, research, engineering, technology and associated professions in the total employment, July 2013 - June 2014	7.2	11	-	3	8.6	-	9	5.9	-	29	6.1	-	24	7.3	-	16	7.8	
Students graduating with first degrees with honours in HEIs by LEP area, 2013/14	308,127	6,228	2.0	19	4,087	1.3	22	3,587	1.2	26	14,105	4.6	5	11,186	3.6	8	39,193	12.7
STEM Research-based doctorate degrees awarded by LEP area, 2013/1				3	53	0.5	26	179	1.6	21	161	1.4	20	223	2.0	17	1,447	12.9
Count of active patents, 2012/13	•			3	10	0.1	27	36	0.2	25	72	0.5	23	164	1.1	14	2,119	14.1
Knowledge diffu	sion																	
Knowledge diffusion	5.0																	
Higher Education Business and Community Interaction income (3 year average in real terms values / ±000s), 2010/11-2012/13	2,803,563	177,421	6.3	3	49,312	1.8	19	30,582	1.1	22	75,389	2.7	16	76,585	2.7	15	409,289	14.6
Contract research income in HEIs (3 year average in real terms values / £000s), 2010/11-2012/13	967,439	29,465	3.0	9	4,734	0.5	25	4,785	0.5	24	16,441	1.7	17	15,159	1.6	18	70,584	7.3
Collaborative research income in HEIs (3 year average in real terms values / £000s), 2010/11-2012/13	668,294	68,789	10.3	2	1,152	0.2	29	10,458	1.6	18	8,703	1.3	19	7,860	1.2	20	96,962	14.5
Continuing Professional Development income in HEIs (3 year average in real terms values / £000s), 2010/11-2012/13	359,124	30,836	8.6	3	2,886	0.8	29	3,138	0.9	27	22,412	6.2	4	39,009	10.9	2	98,281	27.4
Consultancy income in HEIs (3 year average in real terms values / £000s), 2010/11-2012/13	314,666	27,480	8.7	3	12,021	3.8	9	6,167	2.0	16	15,204	4.8	6	5,765	1.8	21	66,637	21.2
Regeneration and development programmes income in HEIs (3 year average in real terms values / £000s), 2010/11-2012/13	129,615	2,290	1.8	18	23,990	18.5	1	4,716	3.6	12	3,456	2.7	16	731	0.6	26	35,183	27.1
Facilities and equipment related services income in HEIs (3 year average in real terms values / £000s), 2010/11-2012/13	117,273	1,960	1.7	18	1,609	1.4	21	754	0.6	26	3,738	3.2	13	456	0.4	28	8,517	7.3
Intellectual property income in HEIs (3 year average in real terms values / £000s), 2010/11-2012/13	63,452	12,350	19.5	2	59	0.1	28	272	0.4	19	184	0.3	20	4,089	6.4	3	16,954	26.7
Knowledge application																		
Percentage o firms engaged in product or service innovation, 2010-2012	45	24	-	7	15	-	35	14	-	36	18	-	23	25	-	3	19.2	-
Percentage of 1rms engaged in process innovation, 2010-2012	10	15	-	4	10	-	28	11	-	24	9	-	32	14	-	9	11.8	-
Percentage of fings engaged in strategic and marketing innovation, 2010-2012	16	32	-	1	29	-	12	21	-	37	28	-	18	31	-	4	28.2	-
Percentage of firm, undertaking R&D by local economic area, 2010-2012	15	26	-	2	16	-	9	12	-	13	15	-	27	19	-	11	17.6	-

Knowledge absorption

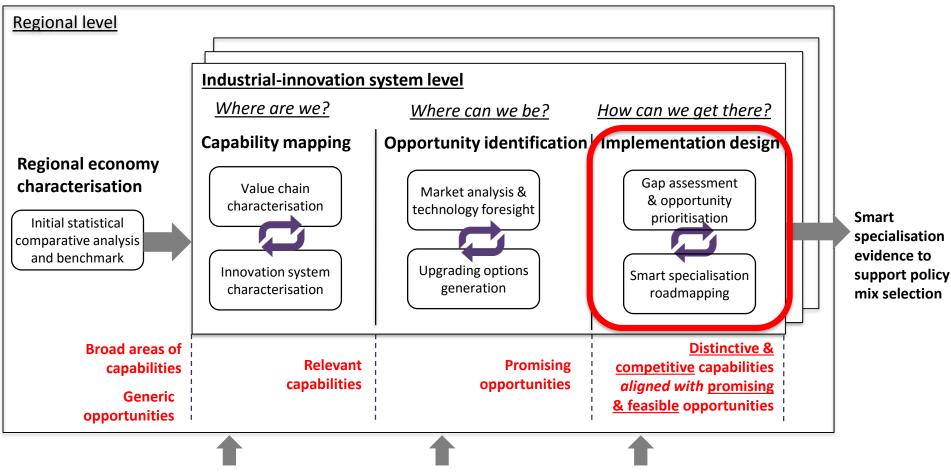
An 'industrial-innovation system' approach to smart specialisation



Analytical tasks supported by 'entrepreneurial discovery process'

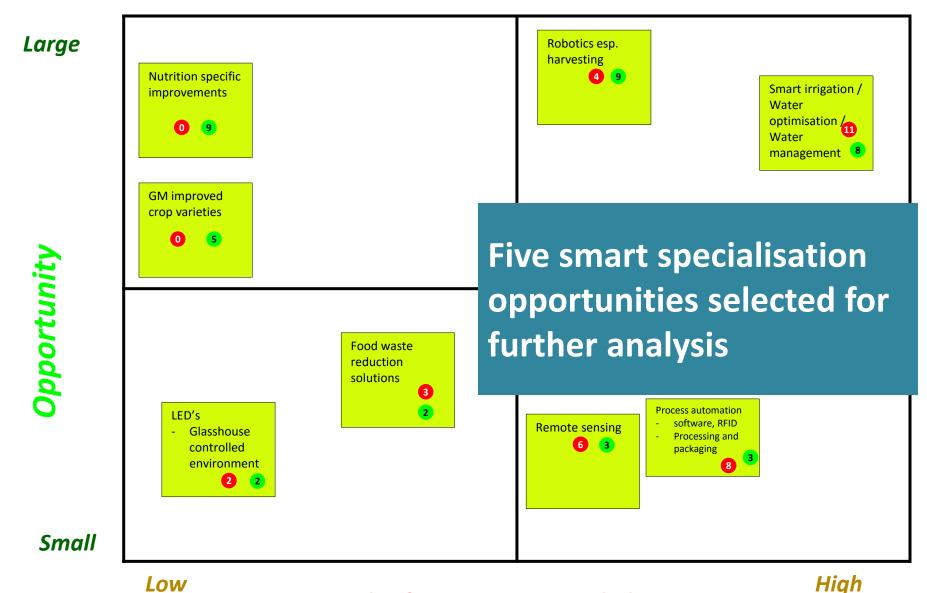

What are the main market opportunities for the region? Please tell us your Top 3

Health cohort studies – Diversity – can test and sell what's growth M [TS] O cexpertise [KP ES] links [KP ES]



Opportunities identified in both arable and horticultural crops and across various stages of the value chain

Identifying opportunities: technologies opportunities


An 'industrial-innovation system' approach to smart specialisation

Analytical tasks supported by 'entrepreneurial discovery process'

Example: Gap assessment & opportunity prioritisation

Level of current capability

Example: Smart specialisation roadmapping

Other

Priority Challenge / Opportunity			Team: KP	L Sm	ith	CD		
Fresh produce	fortification (for impr	oved human nutrition	n) BC	MS		LS		
Description of challenge / opportunity including indication of size)	 Consumer demand for h High market value comr Import substitution (↑ 	nanding higher prices food security for UK) e growers – tightly linked to retaile				n has the potential to n opportunity in:		
Why should the region pursue his?	 Non-glasshouse (field) Very strong links with acade Highly innovative, research Academics, institution cape 	eate and capture value/economic demia and growers and breeders n-active growers, hungry for new able of utilizing new genetic resou- sen R&D organisations and retaile	innov. & appetite for new things irces in veg germplasm					
What are the main agronomic / technical challenges?		of weather/climate change	The region is particularly well- positioned because:					
Local capabilities	to address challenge / c Current relevant capabilities / strengths	Ppportunity New capabilities / strengths that will need to be developed	Key issues to be addressed	Key competitors, their initiatives & strengths				
In the research & innovation base	Genetics / genomics / plant sciences / quadrum	Hardware and product development for data value extraction	 Produce novel genetic lines link between husbandry / management regime and nutritional quality of product 	 UC Davis Wageningen Warwick 				
In local organisations / networks	 Farmer groups ATE Anglia Farmers Innovation Farm 	NO GAPS!			Key issue	s to be addressed:		
In the industrial value chain	 Unilever Bayer / Syngenta Elsoms 	 Managing supply and demand Interpretation of big data information leading to better decision making and input management 	 Better supply chain management No match for translational resource Need better understanding of targets for bio-fortification 	 Netherlands Spain 				

Exclusion gap of subsidy funding to farmers (who would otherwise be

Loss of critical crop protection products in the FU could lead to low

excluded)

Feedback from stakeholders

"Claiming you are world class in everything will not be believed and therefore in an emerging sector like agritech **it is vital that we collectively agree where our real strengths lie.**

The workshop successfully brought together a wide cross section of partners to identify the USP of the AgriTech East region and this will strengthen our ability to attract companies and investment to the area, as well as helping us to develop bids for national and EU funding."

Representative of family-owned firm

Conclusions

Conclusions

- Strategies that are really 'smart' and 'specialised':
 - characterise regional industrial and innovation capabilities at a level of detail that allows clearly recognising what makes the region *distinctive*
 - identify, upon the recognition of this distinctiveness, promising opportunity areas against the backdrop of international competition
 - strategise to ensure that distinctive & competitive capabilities are leveraged in order to pursue promising & feasible opportunities
- An 'industrial-innovation system' approach to better characterise regional value chain and innovation system capabilities offers the potential to make smart specialisation smarter.

linking policy principles and practice

Contact: Carlos Lopez-Gomez, cel44@cam.ac.uk

Policy Links is the knowledge exchange unit of the Centre for Science, Technology & Innovation Policy (CSTI), University of Cambridge

Sources of evidence

Analytical & documental evidence

- Regional data (e.g. regional innovation scoreboard)
- National data (e.g. ONS, BIS reports)
- International data (e.g. international foresight studies)

Qualitative insights

- Expert interviews (scoping and scanning approach)
- Site visits (first-hand observations)
- Smart Specialisation workshop (supporting 'entrepreneurial discovery process – EPD')

Challenges to effective smart specialsiation

Operational challenges

- difficulties to bring together participants from very different environments in an 'entrepreneurial discovery processes' (EC, 2015).
- national and regional governments might feel threatened by a transparent and inclusive bottom-up process.
- ensuring alignment of the priority setting with the budgetary process
- building absorptive capacity inside regional governments
- working with functional regions rather than administrative borders (Foray, 2014; OECD, 2013).
- cutting across traditional power boundaries between ministries
- project ideas that may differ from previous ministerial plans
- risk aversion to engage in new paths
- traditional interest groups and power structures might hinder openness to diversification (EC, 2015).

Note of clarification

- Focus on crops (not livestock in this instance)
- 'East of England' boundaries often have different interpretations
 → potential source of discrepancies
- Pre and post-gate activities considered

The case study proved the value of the suggested approach, in particular in:

- guiding a **clear identification** of what makes the cluster **distinctive**
- helping visualise how different organisations and stakeholders fit and complement each other rather than viewing the activities in competition with each other
- recognising the role of technology-led firms that are critical to the industry but are often not accounted for in the sector statistics.
- highlighting the critical role of intermediaries in the translation of knowledge from the science and research base into industry.

Feedback from workshop participants

"The structured methodology of the event provided a valuable focus to discussions. As a result, the output from the day felt that it had really captured the essence of the regions strength in agri-tech."

Lead Technologist - Agriculture and Food, Innovate UK

"The workshop provided a valuable insight into the challenges that farmers are facing in our area and the output will play a key role in helping the academic and industrial communities prioritise areas for research and investment. This will support the critical role played by Agri-Tech East in developing innovative solutions for farmers and creating new business opportunities, both of which will be critical in maximising the potential of this area."

Representative of major transnational agricultural firm

"Claiming you are World class in everything will not be believed and therefore in an emerging sector like agritech it is vital that we collectively agree where our real strengths lie. The workshop successfully brought together a wide cross section of partners to identify the USP of the AgriTech East region and this will strengthen our ability to attract companies and investment to the area, as well as helping us to develop bids for national and EU funding."

Consultant and representative of family-owned firm

Insights and perspectives from interviews

What makes the East of England different?

"Unique depth and breadth of the research and business sectors" "Feeling of being just one person away from knowledge" "Combination of strong research bases in engineering & plant sciences" "Except for dairy, the whole agri-tech supply chain can be done entirely in the East of England"

Concept of 'smart specialisation workshop'

Workshop with carefully selected local stakeholders

Collaboration with leading cluster organisation in the region.

Over 20 (carefully selected) representatives from industry, academia, govt.

3 main exercises

- What Makes Agri-tech in the EoE Different?
- Market Opportunities
- Addressing Challenges / Exploiting Opportunities

