"Connecting Smart and Sustainable Growth through Smart Specialisation": regional green branching and KETS in a European patent based analysis.

1st SMARTER Conference on Smart Specialisation and Territorial Development 28-30 September 2016, JRC-IPTS Seville (Spain)

Sandro Montresor

(sandro.montresor@unikore.it)

Faculty of Economics and Law, Kore University of Enna (IT)

Francesco Quatraro

(francesco.quatraro@unito.it)

Department of Economics and Statistics "S. Cognetti de Martiis", University of Turin (IT).

1. Inspiring motive.

2. Aim of the paper and research questions.

3. Background literature.

- 4. Empirical application.
- 5. Results.
- 6. Conclusions and future research.

1. Inspiring motive (1/3)

- Connecting smartness and sustainability: a new course of policy action supporting *complementarity* between EU2020 objectives.
- Research on "policy leverages" to bridge objectives:
- Macro and industry level: the bridging role of eco-innovations (Els) (Fussler and James, 1996; Rennings, 2000; Kemp and Pontoglio, 2007); ...
- Regional/urban level: from Els in local contexts (Cainelli-Mazzanti-Montresor, 2012; Ghisetti and Quatraro, 2013; Leoncini-Montresor-Rentocchini, 2016)
- to the bridging role of smart specialisation strategies for research and innovation (RIS3) ...

1. Inspiring motive (2/3)

- Why and how should RIS3 connect regional smartness and sustainability?
- The "simple" policy claim:
- *Why*: regional authorities with greater "proximity" to environmental and growth problems, and higher control of policy instruments for their combined solution (e.g. urban planning, local public procurement, energy programmes) (EC, 2012).
- *How*: "... place sustainable growth at the core of RIS3"; "consider [it] at each step in the design of the RIS3"; "develop multi-level governance for integrated innovation policies, where sustainable growth takes predominance" (ibidem, p. 18) (EC, 2012, p. 18-25).
- The need of a more research-grounded policy claim:
- Extending the RIS3 logic of "regional branching" to the green realm.
- Considering the role of Key-Enabling-Technologies (KETS) for regional "green branching".

1. Inspiring motive (3/3)

- i) Regional branching (in a nutshell) and RIS3 (Boschma and Giannelle, 2014): regions specialise smartly by diversifying into new sectors and/or technologies, but *related* to their preexisting knowledge base.
- > Regional "green branching": regions connect smart and sustainable growth by mastering new environmental technologies through the recombination of their existing knowledge base.
- ii) KETS and regional branching (Montresor and Quatraro, 2016): given their *GPT nature*, KETS (also) attenuate the role of technological relatedness for regional branching and help the regional exploration/discovery of new technologies.
- → KETS and regional green branching: KETS could make preexisting regional competencies less binding for the acquisition of new green ones, and help it also in otherwise locked-in "poorgreen" regions.

2. Aim of the paper and research questions

- Aim:
- Investigate the interplay of regional branching and KETS in helping regions connect smart and sustainable growth strategies, that is, ...
- the determinants of new and cognitively related regional specialisations in green technologies.

Research questions:

- Do technological relatedness #and# KETS affect the region's capacity of acquiring new green technological specialisations?
- Do KETS moderate the impact of technological relatedness on such a regional capacity?

3. Background literature (1/4)

- The "standard" regional branching hypothesis: cumulative regional learning affects industry and <u>technology</u> diversification, in terms of their <u>entry</u>, exit, and cohesion in regions (Tanner, 2014; Neffke et al., 2011).
- Theoretical foundations (Castaldi et al., 2014; Colombelli et al., 2014): local "<u>variety</u>" of industries and/or technologies spurs Jacobsian knowledge spillovers, turning into "<u>recombinant innovations</u>" by relying on their "<u>technological relatedness</u>".
- Empirical evidence: several confirmations at the technology level, using bibliometric and patent data (e.g. Koegler et al., 2013; Rigby, 2013; Boschma et al., 2014; Tanner, 2014; Colombelli et al., 2014; Boschma et al., 2015; Castaldi et al., 2015; Montresor-Quatraro, 2016).

3. Background literature (2/4)

- Towards "green" regional branching: regional diversification into new, related and sustainable industries and technologies.
- Theoretical foundations (our own view!): the special nature of "green technologies" - early-stage, (Consoli et al., 2016), complex (Braungart et al., 2007), multi-mode (Marzucchi-Montresor, 2016) - makes "incremental" approaches (CII-ITC, 2010; EC, 2012) to regional sustainability less risky and costly than "radical" ones (Simmie, 2012; Antonioli et al., 2016).
- Empirical evidence: number of supportive case-studies (Cooke, 2008; 2012; EC, 2012), but still few systematic empirical evidences (patent data for European regions) (Tanner, 2014; van den Berge and Weterings, 2013).

3. Background literature (3/4)

- KETS and regional branching (Montresor and Quatraro, 2016): GPT like KETS (EC, 2009) - *industrial biotechnology, nanotechnology, micro- and nanoelectronics, photonics, advanced materials, and advanced manufacturing technologies* - can favour regional branching and make technological relatedness less binding for it to happen.
- **Theoretical background**: KETS/GPT attenuate the recombination limits posed by the ruling technological paradigm (Olson and Frey, 2002), and yield "newer" recombinations beyond simple branching (Frenken et al, 2012).
- Empirical evidence: 26 EU countries, 1998-2010; KETS patent-knowledge accounts for new regional technological specialisations and negatively moderates – that is, attenuates – the impact exerted by their related variety to pre-existing technologies.

- Towards KETS and "green" regional branching.
- **Theoretical foundations (our own view!):** the combined action of GPT/KETS and regional branching is reinforced with respect to eco-innovations, given the pervasive role of recombinatory processes in economies' green-transitions (Zeppini and van den Bergh, 2011).
- Empirical evidence (suggestive): regional greenbranching compatible with different regional knowledgebases (contra-theory) (Fornahl et al., 2012), providing some other horizontal-locational conditions are present, like access to infrastructure, positive market developments,

• and KETS?

4. Empirical application (1/6)

- Dataset and variables: combination of 3 data sources for EU regions:
- (1) OECD Reg Pat dataset: georeferenced filled patent micro-data:
- New technological specialisation of region *i* in green technology (GT) *s*, at time *t*: *NewGT_RTA_{ist}* controlling for GT being in KETS (*Dummy_KETS_{ist}*);
- Technological relatedness between a newly acquired (by specialisation)
 GT, s, and the pre-existing technologies of region i: Dens_{ist};
- Pre-existing specialisations (knowledge) of region i in GT: GT_RTA_{it-k};
- Pre-existing specialisations (knowledge) of region *i* in KETS technologies: *KETS_RTA_{it-k}*;
- GT and KETS identified by clustering IPCs and CPC according to the WIPO Green Inventory (2012) and the EC-Feasibility-Study (EC, 2012).

4. Empirical application (2/6)

- Dataset and variables: combination of 3 data sources:
- (2) European Regional Database (Cambridge Econometrics): other determinants of regional branching and controls:
- Region *i* valued added at time *t k*: *GVA*_{*it-k*};
- Region *i* employment at time *t k*: *Employment*_{*it-k*};
- (3) Eurostat regional statistics:
- Region i R&D intensity at time t k: R&D_{it-k}
- **Final sample**: 235 NUTS2 regions for 26 EU countries (excluding only Greece and Croatia from the 28 of the EU due to data constraints) over the period 1981-2010.

4. Empirical application (3/6)

- Variables construction:
- Technology-related variables: built up by working out the Revealed Technological Advantage (RTA) of region *i* in the focal technology s:

$$RTA_{ist} = \frac{PAT_{ist}}{\sum_{i=1}^{n} PAT_{ist}}$$
$$\sum_{s=1}^{m} PAT_{ist}$$
$$\sum_{i=1}^{n} \sum_{s=1}^{m} PAT_{ist}$$

- Region *i* technological specialisation in *s* if *RTA_{ist}* > 1;
- erratic trends in patents smoothed with 5-year MA;
- regressors lagged by 5 years (k = 5) (robust choice).

4. Empirical application (4/6)

Variables construction:

 $NewGT_RTA_{ist} = 1$, if $GT_RTA_{ist} > 1$ and $0 < GT_RTA_{ist-k} < 1$ $NewGT_RTA_{ist} = 0$, otherwise

$$GT_RTA_{it-k} = \sum_{s=1}^{n} DGT_RTA_{ist-k}$$

with $DGT_RTA_{ist-k} = 1$ if $GT_RTA_{ist-k} > 1$; 0 otherwise

 $KETS_RTA_{it-k} = \sum_{s=1}^{n} DKETS_RTA_{ist-k}$ with $DKETS_RTA_{ist-k} = 1$ if KETS_ $RTA_{ist-k} > 1$; 0 otherwise

4. Empirical application (5/6)

Variables construction:

Following and extending Hidalgo et al. (2007),

$$Dens_{ist} = \frac{\sum_{s \neq z} \varphi_{szt-1} NewGT RTA_{ist}}{\sum_{s \neq z} \varphi_{szt-1}}$$

where:

$$\varphi_{szt} = \min \left\{ P(RTA_{st} | RTA_{zt}), P(RTA_{z} | RTA_{s}) \right\}$$
$$P(RTA_{st} | RTA_{zt}) = \frac{P(RTA_{st} \cap RTA_{zt})}{P(RTA_{zt})}$$

4. Empirical application (6/6)

• Econometric strategy:

 $NewGT_RTA_{ist} = f(Dens_{ist};GT_RTA_{it-k};Dens_{ist} * GT_RTA_{it-k};$ $KETS_RTA_{it-k};Dens_{ist} * KETS_RTA_{it-k};$ $Dummy_KETS_{ist};z_{it-1};dtime;dregion;\varepsilon_{it})$

- Dichotomous-dependent variable:
- Linear Probability Model as benchmark: binomial regression making use of OLS;
- Generalized Linear Model (McCullaghand Nelder, 1989): reference model to deal with possibly inefficiency (Cox, 1970).

5. Results (preliminary) (1/6)

Table 1 – Green regional branching and KETS

	(1)	(2)	(3)	(4)	-
	Full	Full	Full	No KETS	
	Sample	Sample	Sample	GIS	-
Dens _{ist}	0.8299 ^{***} (0.0220)	1.2247 ^{***} (0.0200)	0.9436 ^{***} (0.0266)	0.9242 ^{***} (0.0287)	
GT_RTA _{it-5}	0.0046 ^{***} (0.0003)	0.0184 ^{***} (0.0004)	0.0046 ^{***} (0.0003)	0.0043 ^{***} (0.0003)	۲ ۱
Dens _{ist} * GT_RTA _{tt-5}		-0.0454 ^{***} (0.0011)			r
KETS_RTA _{it-5}			0.0001 ^{***} (0.0000)	0.0002 ^{***} (0.0000)	ŀ
Dens _{ist} * KETS_RTA _{t-5}			-0.0006	-0.0005	
_			(0.0001)	(0.0001)	-
Dummy_KETS			0.0055		ā
			(0.0011)		+
					۲ (L
Constant	-0.0015	-0.1480	-0.0161	-0.2136	
	(0.0042)	(0.0050)	(0.0052)	(0.0485)	_
N	977184	977184	977184	674365	
R ⁴	0.099	0.119	0.100	0.096	
adj. <i>R</i> *	0.0984	0.1185	0.1001	0.0958	-

Standard errors in parentheses

* *p* < 0.10, ** *p* < 0.05, *** *p* < 0.01

The cognitive/technological proximity to the preexisting knowledge base makes the acquisition of a green specialisation more probable.

→ Regional branching apparently at work also in the green realm.

5. Results (preliminary) (2/6)

Table 1 – Green regional branching and KETS

	(1)	(2)	(3)	(4)	-
	Full	Full	Full	No KETS	
	Sample	Sample	Sample	GIS	-
Densist	0.8299 (0.0220)	1.2247 (0.0200)	0.9436 ^{***} (0.0266)	0.9242 ^{***} (0.0287)	_
GT_RTA _{it-5}	0.0046 ^{***} (0.0003)	0.0184 ^{***} (0.0004)	0.0046 ^{***} (0.0003)	0.0043 ^{***} (0.0003)	
Dens _{ist} * GT_RTA _{tt-5}		-0.0454 ^{***} (0.0011)			
KETS_RTA _{it-5}			0.0001 ^{***} (0.0000)	0.0002 ^{***} (0.0000)	
Dens _{ist} * KETS RTA _{t-5}			-0.0006	-0.0005	
			(0.0001)	(0.0001)	
Dummy_KETS			0.0055		
			(0.0011)		
Constant	-0.0015	-0.1480	-0.0161	-0.2136	
	(0.0042)	(0.0050)	(0.0052)	(0.0485)	
N	977184	977184	977184	674365	-
R^2	0.099	0.119	0.100	0.096	
adj. R ²	0.0984	0.1185	0.1001	0.0958	_

Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01

Pre-existing green knowledge does also make the acquisition of new green technologies more probable.

 \rightarrow The regional approach to environmental sustainability actually looks "incremental" and pathdependent.

5. Results (preliminary) (3/6)

Table 1 – Green regional branching and KETS

	(1) Full Sample	(2) Full Sample	(3) Full Sample	(4) No KETs GTs	-
Densist	0.8299 ^{***} (0.0220)	1.2247 ^{***} (0.0200)	0.9436 ^{***} (0.0266)	0.9242 ^{***} (0.0287)	An his
GT_RTA _{it-5}	0.0046 ^{***} (0.0003)	0.0184 ^{***} (0.0004)	0.0046 ^{***} (0.0003)	0.0043 ^{***} (0.0003)	knowl make
Dens _{ist} * GT_RTA _{tt-5}		-0.0454 ^{***} (0.0011)			relate
KETS_RTA _{it-5}			0.0001 ^{***} (0.0000)	0.0002 ^{***} (0.0000)	
Dens _{ist} * KETS RTA _{t-5}			-0.0006***	-0.0005	have r
			(0.0001)	(0.0001)	explor
Dummy_KETS			0.0055 ^{***} (0.0011)		in a su
Constant	-0.0015 (0.0042)	-0.1480 (0.0050)	-0.0161 (0.0052)	-0.2136 ^{***} (0.0485)	
N P ²	977184	977184	977184	674365	
adj. R ²	0.0984	0.1185	0.1001	0.0958	

Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01

story of green ledge could even technological dness less binding for iewal.

een regions could more scope for ring and diversifying ustainable manner.

5. Results (preliminary) (4/6)

Table 1 – Green regional branching and KETS

	(1) Full	(2) Full	(3) Full	(4) No KETs	
	Sample	Sample	Sample	GTs	-
Dens _{ist}	0.8299 ^{***} (0.0220)	1.2247 (0.0200)	0.9436 ^{***} (0.0266)	0.9242 ^{***} (0.0287)	
GT_RTA _{it-5}	0.0046 ^{***} (0.0003)	0.0184 ^{***} (0.0004)	0.0046 ^{***} (0.0003)	0.0043 ^{***} (0.0003)	
Dens _{ist} * GT_RTA _{tt-5}		-0.0454 ^{***} (0.0011)			
KETS_RTA _{it-5}			0.0001 ^{***} (0.0000)	0.0002 ^{***} (0.0000)	
Dens _{ist} * KETS_RTA _{t-5}			-0.0006	-0.0005	
_			(0.0001)	(0.0001)	
Dummy KETS			0.0055		
			(0.0011)		
Constant	-0.0015	-0.1480	-0.0161	-0.2136	
	(0.0042)	(0.0050)	(0.0052)	(0.0485)	
N D ²	977184	977184	977184	674365	
K [−] adi D ²	0.099	0.119	0.100	0.096	
auj. R	0.0984	0.1185	0.1001	0.0958	-

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

KETS do actually help green regional branching, and attenuate the role of technological relatedness for it to happen.

→ KETS could help (in particular less and/or no green) regions attenuate the binding role of the proximity to their knowledge base for diversifying in a sustainable manner.

5. Results (preliminary) (5/6)

Table 2 – Green regional branching and KETS by typology

	(1)	(2)	(3)	(4)	(5)	(6)	
Dens _{ist} KETS_1_RTA _{it-5}	0.9536 ^{***} (0.0258) 0.0014 ^{***}	0.8594 ^{***} (0.0235)	0.8862 ^{***} (0.0270)	0.9089 ^{***} (0.0268)	0.9119 ^{***} (0.0287)	0.9376 ^{***} (0.0281)	
Dens _{ist} * KETS_1_RTA _{it-5} KETS_2_RTA _{it-5} Dens _{ist} * KETS_2_RTA _{it-5} KETS_3_RTA _{it-5}	(0.0001) -0.0044 (0.0004)	0.0245 ^{***} (0.0034) -0.0727 ^{***} (0.0109)	0.0009***		KETS role respect t typology An appar	e invariant with to their specific : rently homogeneous	
Dens _{ist} * KETS_3_RTA _{it-5} KETS_4_RTA _{it-5}			(0.0002) -0.0026 ^{***} (0.0004)	0.0014***	group als regional	so in terms of green branching.	
Dens _{ist} * KETS_4_RTA _{it-5} KETS_5_RTA _{it-5}				(0.0002) -0.0043 (0.0006)	0.0005**** (0.0001),		
Dens* KETS_5_RTA _{it-5} KETS_6_RTA _{it-5}					-0.0014 ^{***} (0.0002)	0.0005*** (0.0001)	(2
Dens _{ist} " KETS_6_RTA _{it-5}						(0.0002)	

5. Results (preliminary) (6/6)

Table 2 – Green regional branching and KETS by typology

	(1)	(2)	(3)	(4)	(5)	(6)
Dummy_KET	0.0036 ^{***} (0.0013)	0.0038 ^{***} (0.0014)	0.0040 ^{***} (0.0014)	0.0040 ^{***} (0.0013)	0.0039 ^{***} (0.0014)	0.0041 ^{***} (0.0013)
GT_RTA _{it-5}	0.0042 ^{***} (0.0003)					
Constant	_ 0.1365 ^{***}	0.0972***	0.0433***	0.0424***	0.0413***	0.0443***
	(0.0402)	(0.0339)	(0.0144)	(0.0144)	(0.0144)	(0.0149)
Ν	784341	784341	784341	784341	784341	784341
R^2	0.092	0.090	0.091	0.091	0.091	0.091
adj. <i>R</i> ²	0.0913	0.0902	0.0905	0.0909	0.0907	0.0912

6. Conclusions and future research (1/2)

Main conclusions

- Regions do show an incremental (path-dependent) approach to environmental sustainability and reveal traces of green branching.
- Policy implication: sustainability does actually seem to connect with smartness in the acception of RIS3 → RIS3 appears a research grounded connecting policy.
- KETS play a similar role to previous experience of green knowledge in attenuating the impact of technological relatedness on green regional branching.
- Policy implication: integrating KETS in the RIS3 toolbox could help inexpert green regions to enter in the environmental realm.

6. Conclusions and future research (2/2)

• Future research:

- Insert other forms of proximity for regional green branching to occur (e.g. spatial one with regional spillovers).
- Address the net role of KETS for regional green branching and eventually their role in allowing regions to shift from non-green to green technologies.
- Compare the net effect of the 6 different KETS.
- Combine the Green Inventory (WIPO, 2012) with the OECD "Environmental Technologies" indicators ENV-TECH (Haščič and Migotto, 2015) to refine the identification of green technologies.
- Refine the econometric strategy and insert a more consistent set of controls (e.g. environmental regulations), also for regions with different degrees of development.

Thanks for your attention

