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ABSTRACT   Estimating regional inequality, many economists use inequality indices weighted 

by regions’ proportions of the national population. Despite this approach is widespread, its 

adequacy has not received attention in the regional science literature. This paper proves that 

such approach is conceptually inconsistent, yielding an estimate of interpersonal inequality 

among the whole population of the country rather than an estimate of regional inequality. But, 

as a measure of interpersonal inequality, such an estimate is very rough (up to misleading) 

and not always has an intuitive interpretation. Moreover, the population-weighted inequality 

indices do not meet requirements to an adequate inequality measure.  
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1. Introduction 

Studying economic inequality in a country, one may consider distribution of income between 

individuals or between country’s regions. The latter not only introduces spatial dimension in 

studies of inequality, but can also reveal important links remaining overlooked with treating 

the country as a whole. For example, while the literature on civil war has found little support 

for a link between individual-level economic inequality and civil war, Deiwiks et al. (2012) 

find strong evidence that regional inequality affects the risk of secessionist conflict. In both 

cases, the same statistical methodology and inequality indices (which amount to a few tens) 

are applied, with the difference that regions rather than individuals are taken as observations. 

However, there is a modification of the inequality indices that is applied to measure regional 

inequality.    

Apparently, Williamson (1965) was the first who put forward the idea of weighting 

indices that measure inequality between regions of a country by regions’ shares in the national 

population. Since then such an approach became fairly widespread in regional studies. 

Publications that use it number in hundreds. Therefore I am able to cite only a small part of 

them, using a dozen of recent journal articles as a ‘sample’. Table 1 tabulates them, reporting 

population-weighted inequality indices applied as well as geographical and temporal coverage 

of respective studies. In this table, CV = coefficient of variation, G = Gini index, Th = Theil 

index, MLD = mean logarithmic deviation,  = standard deviation of logarithms and RMD = 

relative mean deviation. Subscript w indicates that the index is a population-weighted one.   

Most studies from Table 1 use regional GDP per capita as a well-being indicator. An 

exception is Doran & Jordan (2013) who exploit regional gross value added per capita; a few 

studies consider some additional indicators. The table shows that the application of the 

population-weighted inequality indices is greatly varied both in geographical terms and time 

spans (note that if different countries are involved in a study, the case at hand is not 

international inequality; the study deals with regional inequalities in a respective set of 

countries). Inequality indices employed are also manifold. The most popular ones are the 

coefficient of variation, Gini and Theil indices (many other, ‘out of sample’, papers confirm 

this). Therefore only these three indices will be dealt with in what follows. It should be noted 

that the population-weighted indices are present not only in the literature on economic 

inequality; they find use in studies of inequality in the areas of health care, education, energy 

policy, etc.  
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Table 1. Selected recent studies that use population-weighted inequality indices.  

 
Author(s) Weighted index(es) 

employed 

Geographical coverage Time span 

Doran & Jordan (2013) Thw 14 EU countries (NUTS 

2 regions) 

1980–2009  

Enflo & Rosés (2015) MLDw Sweden 1860–2000 

Ezcurra & Rodríguez-Pose (2014) Thw,  CVw, MLDw, w  22 emerging countries 1990–2006 

Kyriacou & Roca-Sagalés (2014) CVw, MLDw, w 22 OECD countries 1990–2005 

Lessmann (2014) CVw 56 countries 1980–2009 

Li & Gibson (2013) Gw, CVw, Thw China 1990–2010 

Martínez-Galarraga et al. (2015) Thw Spain 1860–2000 

Mussini (2015) Gw 28 EU countries (NUTS 

3 regions) 

2003–2011 

Petrakos & Psycharis (2016) CVw Greece 2000–2012 

Sacchi & Salotti (2014) CVw, w, MLDw 21 OECD countries 1981–2005 

Wijerathna et al. (2014) Gw, CVw, RMDw Sri Lanka 1996–2011 

Zubarevich & Safronov (2011) Gw, CVw Russia, Ukraine, 

Kazakhstan 

1998–2009 

 

Williamson did not provide a more or less detailed substantiation of his idea, merely 

noted that an unweighted inequality index “will be determined in part by the somewhat 

arbitrary political definition of regional units” and “[t]he preference for an unweighted index 

over a weighted one, we think, is indefensible” (Williamson, 1965, pp. 11, 34). Nor such 

substantiations appeared within next 50 years. Even a handbook chapter on measuring 

regional divides only asserts that the use of unweighted inequality indices “may lead to 

unrealistic results in certain cases, affecting our perception of convergence or divergence 

trends” (Ezcurra & Rodríguez-Pose, 2009, p. 332), providing no proof or example. A sole 

attempt to explore properties of the population-weighted indices is due to Portnov & 

Felsenstein (2010); it will be discussed in Section 5. Yet even Williamson’s brief notes cited 

are open to question.  

First, the political division of a country is the reality which regional researchers should 

deal with, irrespective of whether they believe it to be ‘somewhat arbitrary’ or ‘natural’. 

Certainly, they may discuss its shortcomings and find ways of improvement, but it is a quite 

different story unrelated to the issue of regional inequality. Therefore the desire for 

‘adjustment’ of existing political division through assigning less importance to lesser 

populated regions seems strange. 

Second, why do we need taking into account differences in regional population at all? 

But we can estimate inequality among groups in country’s population without regard for sizes 

of these groups. For instance, while estimating wage inequality between industrial workers, 

builders, teachers, lawyers and so on, we do not care about what shares of these occupational 
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groups in the total population (or employees) are. What is a fundamental difference between 

this and the case when each population group consists of inhabitants of one region?   

Third, on closer inspection results of estimating inequality with the use of population-

weighted indices look striking; they may prove to be evidently unrealistic. The next section 

gives an impressive example. 

The purpose of this paper is to show that the application of population-weighted indices 

for measuring regional inequality is nothing but a fallacy. The main point is that they measure 

not inequality between regions but something else and therefore yield distorted estimates of 

regional inequality. In other words, the unweghted and weighted indices measure different 

phenomena. Albeit Williamson’s approach has received some criticism (which will be 

discussed in Section 5), the literature has overlooked this point. Moreover, this paper proves 

that these indices do not meet requirements to an adequate inequality measure. 

The statement above seemingly contradicts the fact that the approach under 

consideration is commonly employed in the literature. However, this fact in no way evidences 

adequacy of the approach. For instance, analyzing -convergence is even more widespread (in 

the literature on economic growth and inequality); relevant publications number in thousands. 

Nonetheless, a number of authors, e.g. Friedman (1992), Quah (1993), Wodon & Yitzhaki 

(2006) and Gluschenko (2012), proved invalidity of this methodology. 

The rest of the paper is organized as follows. Section 2 reveals the true sense of 

inequality estimates obtained with the use of the population-weighted indices. Section 3 

considers the issues of biases in the weighted indices and interpretability of these indices. 

Section 4 analyzes properties of the population-weighted indices, providing proofs that they 

violate three important axioms. Section 5 discusses arguments against and in favour of the 

population weighting found in the literature. Section 6 summarizes conclusions drawn in the 

paper.   

 

2. What Do Population-Weighted Indices Measure? 

Consider cross-region income distribution y = (yi), i = 1, …, m; yi = per capita income in 

region i and y  = the arithmetic average of regional per capita incomes ( myyy m /)...( 1  ). 

Then the coefficient of variation measuring regional inequality has the form 

y

myy
CV

m

i i 



1

2 /)(
.             (1) 
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Now let Ni = population of region i; N = population of the country; ni = Ni/N = region’s 

share in the national population (region’s weight); n = (ni) will be called population distribution. 

The weighted average of regional per capita incomes ( mmw ynyny  ...11)( ) is denoted by 

)(wy . It exactly equals the national per capita income: NYNYYy mw //)...( 1)(  , where Yi 

stands for region’s total income (Yi = Niyi) and Y represents the national total income. Under 

this notation, the Williamson coefficient of variation (Williamson, 1965, p. 11) – sometimes 

called the Williamson index – looks like 

)(

1

2

)( )(

w

m

i iwi

w
y

nyy
CV

 


 .             (2) 

The Gini and Theil indices can be respectively written as 

ym

yy
G

m

i

m

k ki

2

1 1

2

  


 ;             (3)   

 


m

i

ii

y

y

y

y

m
Th

1
)ln(

1
.              (4) 

Their population-weighted counterparts take the forms 

)(

1 1

2 w

m

i

m

k kiki

w
y

yynn
G

  


 ;             (5) 
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y
nTh

1
)()(

)ln( .             (6) 

Sometimes, the weighting by population is present in the Theil index implicitly. For 

example, Doran & Jordan (2013, p. 25–26) construct the index from regions’ contributions to 

the total income, Yi/Y, and regions’ contributions to the total population, Ni/N. Martínez-

Galarraga et al. (2015, p. 510) use a similar way. It is easily seen that such index is equivalent 

to that represented by Formula (6): 

w

m

i
w

i

w

i

i

m

i

ii

w

iim

i
i

ii Th
y

y

y

y
n

NY

NY

yN

yN

NN

YY

Y

Y
   1

)()(
1

)(
1

)ln()
/

/
ln()

/

/
ln( . 

Let us perform a simple test for adequacy of the population-weighted indices. Consider 

two Chinese regions, mainland China as a whole (in Chinese, Dàlù) and Macao, the Special 

Administrative Region of the People’s Republic of China (and the richest territory of the 

world). In hoary antiquity, when the Portuguese occupied as large part of the Chinese territory 

as they could (or needed), Macao might be deemed a ‘somewhat arbitrary’ regional unit. 
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Nowadays, it is quite natural, as Macao has its own currency, and citizens of China from other 

regions need visa to get there. Table 2 reports data on these regions. 

 

Table 2. Per capita income and population in mainland China and Macao in 2014.  

 
Region PPP-adjusted GDP per capita 

(yi), current international 

dollars 1 

Population (Ni), million 

people 2 

Region weight (ni) 

Mainland China 13,217 1,376.049 0.999573 

Macao 139,767 0.588 0.000427 
1 World Bank (2015). 
2 United Nations (2015, p. 13). 

 

Estimating income inequality between mainland China and Macao, we get results listed 

in Table 3. It reports values of the population-weighted coefficient of variation and Gini and 

Theil indices defined by Formulae (2), (5) and (6) as well as values of the unweighted indices 

according to Formulae (1), (3) and (4). For comparability, the table also reports these indices 

standardized so that they range from 0 to 1. That is, an index is divided by its maximum 

corresponding to perfect inequality. For our case of two observations, the maxima of CV, G 

and Th are respectively 1, 0.5 and log(2). The maxima of CVw, Gw and Thw approximately 

equal 1, 48.4 and 7.8 (the way of computing these maxima will be explained in Section 4 and 

summarized in its Table 8). 

 

Table 3. Estimates of income inequality between mainland China and Macao.  

 
Index Population-weighted Unweighted  

 Raw Standardized Raw Standardized 

Coefficient of variation 0.197 0.004 0.827 0.827 

Gini index 0.004 0.004 0.414 0.827 

Theil index 0.007 0.001 0.399 0.576 

Average income 
)(wy = 13,721 y = 76,492 

 

While the unweighted indices indicate a high degree of inequality, the population-

weighted ones yield the reverse pattern. The standardized values of CVw and Gw are equal to 

0.4% in percentage terms; and standardized Thw is even less than 0.1%. This suggests that 

there is (almost) no income inequality between the average mainland Chinese and average 

inhabitant of Macao. Indeed, our perception of spatial inequality is greatly distorted, but in the 

sense opposite to the above-cited view of Ezcurra & Rodríguez-Pose (2009, p. 332): it is the 

population weighting that gives rise to distortions.  
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In the two-region case, the result evidently contradicts common sense. A sufficiently 

great number of regions in empirical studies masks, as a rule, such absurdities, creating an 

impression that estimates of inequality with the use of the population weighting are 

reasonable.  

Then what is the reason for that low inequality suggested by the population-weighted 

inequality indices in the above example?  What is the sense of the estimates obtained? To 

understand what the weighted indices measure, let us estimate inequality among all citizens of 

a country, basing on cross-region income distribution. The ‘national’ coefficient of variation 

(CVnat) with yl standing for personal income of l-th citizen of the country looks like 

y

Nyy
CV

N

l l

nat

 



1

2 /)(
. 

Obviously, the population-average income in this formula – national per capita income, 

Nyyy N /)...( 1   – equals the weighted average of regional per capita incomes, )(wy . 

Lacking information on intra-regional income distributions, we are forced to assume that all 

inhabitants of a region have the same income equalling per capita income in this region. Then 

square deviations 
2

)( )( wl yy   are uniform for all l relating to inhabitants of the same region, 

say i. Hence, their sum over all inhabitants of the region is iwi Nyy 2

)( )(  . Summing up such 

sums over all regions, we come to the Williamson coefficient of variation: 

w

w

m

i iwi

w

m

i iwi

nat CV
y

nyy

y

NNyy
CV 







 

)(

1

2

)(

)(

1

2

)( )(/)(
. 

Thus, the population-weighted coefficient of variation is not a measure of inequality 

between regions; instead, it measures national inequality, i.e. interpersonal inequality in the 

whole population of the country. This fact is valid for any other population-weighted inequality 

index (maybe, except for those based on partial information from cross-region income 

distributions, e.g. the relative range of disparities, i
i

i
i

yyR min/max , interquartile range, and the 

like; however, it seems that the weighting is hardly applicable to them); the proof is simple and 

similar to the above one. (Of course, we need not necessarily take an entire country; the conclusion 

still holds if we consider any subset of regions as a ‘country’.) 

This explains the sense of results obtained with the population-weighted indices in Table 3. 

These measure inequality between inhabitants of united mainland China and Macao. Provided that 
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inequality within mainland China is zero (as all its inhabitants are supposed to have the same 

income), adding less than one million people – even with extremely high income – to its 1.4-

billion population can increase the degree of the overall inequality only slightly.   

It is seen that there is a conceptual distinction between the unweighted and population-

weighted estimates of inequality; they measure different phenomena. The unweighted index 

measures inequality between regions (considered as a whole), while the weighted one measures 

inequality between all country’s citizens.  

Considering inequality between regions, all of them enjoy equal rights in the sense that all yi 

are equiprobable (i.e. the probability of finding income yi in a randomly chosen region is the same 

for all i and equals 1/m). Albeit speaking of regions, we actually deal with individuals, 

representative (or ‘average’, i.e. having the region-average income) inhabitant of each region. 

Estimating regional inequality, we compare their incomes without regard for how many people 

live in respective regions (like we do while comparing wages across occupations). Indeed, the fact 

that the average inhabitant of Macao is almost 11 times richer than the average mainland Chinese 

in no way changes because of the fact that the population of Macao is 2,340 times smaller than the 

population of mainland China. 

Introducing regional weights implies that a region is represented by all its inhabitants rather 

than by one ‘average’ inhabitant. That is, we consider region i as a group of Ni people, each 

individual within the group having income yi. Then the probability of yi differs across regions, 

becoming proportional to their populations, ni. Thus, (ni) is a proxy of the personal-income 

distribution in the country. In fact, we ‘split’ regions into their individual inhabitants so that all 

they in aggregate represent the whole population of the country, as Figure 1 illustrates, and 

estimate inequality between these N persons, so inevitably substituting regional inequality for 

interpersonal one. However, lacking information on income differences within regions, we 

consider inhabitants of each region as identical and regions as internally homogeneous groups of 

people. Thus we arrive at a grouping of the whole country’s population into income classes (yi) of 

different sizes (Ni). The regional division matters no more; the impression that the case at hand is 

inequality between regions is but an illusion owing to that the grouping proceeds from the data by 

region. An estimate of the national inequality obtained with such grouping is very crude, since it 

neglects inequality within regions and – what is much more important – the income classes yi 

(constructed from cross-region data) in fact heavily overlap because of overlapping intra-regional 

income distributions. (This issue is considered in more detail in the next section.)    
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Figure 1. Population of the country as a set of regional populations (assuming population of 

each region to be income homogeneous, yl = yi for Ki + 1  l  Ki + Ni). 

Note: 





1

1

i

j ji NK ; K1 = 0. 

 

As it is known, inequality in the country, being measured by the Theil index, can be 

decomposed into two components: within-region inequality and between-region inequality. Under 

notation of this paper, the decomposition of national inequality looks like 

wi

m

i
w

i

i

m

i
w

i

w

i

ii

m

i
w

i

inat ThTh
y

y
n

y

y
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1
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)log( , 

where Thi = Theil index for the population of i-th region. Thus, the population-weighted Theil 

index represents only a part of national inequality, namely, between-region inequality. It answers 

to the counterfactual question: ‘how much inequality would be observed [in the country] if 

there was no inequality within regions?’ (Shorrocks & Wan, 2005, p. 60). 

It follows herefrom that a population-weighted estimate of inequality is biased with regard 

to estimates of both regional inequality (as it measures a different value) and interpersonal 

inequality (as it does not take account of within-region income disparities). In both cases, the result 

can be misleading as the example of two Chinese regions demonstrates.  

The bias can have either direction depending on a particular combination of regional per 

capita incomes and populations. Williamson (1965, p. 12) reports values of both weighted and 

unweighted coefficient of variation estimated on regional data from 24 countries. Regional 

inequality estimated by CVw proves to be overstated in about a half of countries, and 

understated in another half. The biases (relative to the unweighted estimates) range from         

y 

yi 

ym 

y1 

1 Ki+1 Ki+2 Ki+3 Ki+Ni Km+2 Km+1 N1 2 3 

… … … 
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individual, l 

Km+Nm=N 
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–52.6% (in India) to +37.6% (in Puerto Fico). The case of India is an example of quite 

misleading result in an actual study (covering 18 regions): the population-weighted index 

understates the extent of regional inequality there by more than a half. Differences in trends 

also can occur. Figure 2 depicts the evolution of inequality in Australia over 11 years 

according to the unweghted and population-weighted coefficient of variation. The estimates 

are computed from Williamson’s (1965, p. 48) data. It is seen that the trends of CV and CVw 

are sometimes opposite, e.g. in the whole period of 1952/53 to 1958/59. Regional inequality, 

measured by CV, fell by 4.7% in 1959/60 as compared to 1949/50, while it increased by 

20.6% according to the weighted estimates. Thus we come to opposite conclusions depending 

on the use of unweghted or population-weighted measures. 
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Figure 2. Paths of the weighted and unweighted coefficient of variation in Australia. 

 

One more evidence is due to Petrakos & Psycharis (2016). They estimate the evolution 

of regional inequality in Greece across its NUTS 2 and NUTS 3 regions over 2000–2012, 

using both population-weighted and unweighted coefficient of variation. The trend of CVw is 

upward, while CV has either a downward trend (in the case of NUTS 3 regions) or is stable 

(for NUTS 2 regions).  

Milanovic’s (2012) results provide evidence in the international context. He estimates 

income inequality (by the Gini index) between counties and in the world as a whole over 

1952–2006. In the latter case, the index weighted by populations of the countries is applied. 

However, unlike most (if not all) regional studies applying population-weighted measures, he 
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explicitly interpret it as an approximate measure of global inequality (inequality across world 

individuals) rather than an estimate of international (cross-country) inequality, realizing that it 

is not only a rough, but possibly misleading, estimate. The sole reason for application of that 

rough proxy is the absence of household survey data for a sufficient number of countries prior 

to the 1980s (Milanovic, 2012, p. 8). The trends of the unweighted and weighted Gini indices 

are found to have opposite directions, upward for the former and downward for the latter (the 

both become downward only since 2000). As regards interpersonal inequality, Milanovic 

(2012, p. 14) also reports estimates of global inequality for 1988–2005 based on household 

survey data (i.e. taking into account income distributions within countries). These prove to be, 

first, much higher that the weighted estimates, and, second, sliding upward (although only 

slightly) rather than downward. Thus, estimates obtained with the use of the weighted Gini 

index turn out to be really misleading with respect to inequality both between countries and 

between world individuals. 

 

3. Population-Weighted Indices as Measures of Interpersonal Inequality   

As it has been mentioned in the previous section, an estimate of interpersonal inequality in the 

country or any subset of regions with the use of the population-weighted indices is biased 

because of neglecting inequality within regions. An actual ‘splitting’ regions into their 

individual inhabitants would yield something like a pattern depicted in Figure 3 (individuals 

within each region are arranged according to their personal incomes), which fundamentally differs 

from the pattern supposed in Figure 1.  

Individuals in a region may have incomes that are near to or even coincide with incomes of 

inhabitants of other regions, which implies that individuals from the same region in fact fall into 

different income classes and individuals from different regions may fall into the same income 

classes. In other words, regional income distributions overlap with one another. Because of this 

overlapping, the division of country’s population into income classes according to regional per 

capita income – like in Figure 1 – turns out improper, resulting in inadequate estimation of 

inequality in the country. To correctly estimate inequality between N persons making up the 

population of the country, all they should be rearranged by income within the whole country and 

then grouped (irrespective of their regions of origin) into some actual income classes. 
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Figure 3. Population of the country as a set of regional populations (actual pattern). 

Note: 





1

1

i

j ji NK ; K1 = 0. 

 

Applying the population-weighted Gini index, Mussini (2015) estimates inequality 

between NUTS 3 regions in the EU-28 over 2003–2011 and decomposes its changes into those 

caused by population change, re-ranking of regions and growth of regional per capita incomes. 

In the light of the above considerations the intuitive sense of the first component becomes 

absolutely obscure. In fact, inequality within population of the whole geographical entity 

comprising of NUTS 3 regions is measured. Imagine that the cross-individual income 

distribution in this entity remains invariant while the cross-region population distribution 

changes. Then the effect of population change in the decomposition of inequality change 

reflects nothing but a result of replacing one improper division of the population into income 

classes by another, also improper, one.  

Data drawn from the Russian statistics provide convenient real examples with small 

numbers of regions that make it possible to judge the extent of distortions in estimates of 

interpersonal inequality caused by the application of population-weighted indices. There are two 

regions in Russia, the Arkhangelsk Oblast and Tyumen Oblast, that include national entities, so 

called autonomous okrugs (hereafter, AO). The Arkhangelsk Oblast includes the Nenets AO, 

and the Tyumen Oblast includes Khanty-Mansi AO and Yamalo-Nenets AO. Statistical data on 

personal income distribution and inequality are available for each oblast as a whole and all its 

parts (‘subregions’), namely, AO(s) and the oblast excluding AO(s); for brevity, the latter will 

be called Southern part. Based on such data, we can compare actual estimates of inequality in 
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the whole region with those obtained with the use of population-weighted index for these two-

subregion and three-subregion cases. Table 4 tabulates the relevant data.     

 

Table 4. Income and population in the Arkhangelsk and Tyumen Oblasts in 2014.  

 
i Region/subregion  Personal income, Russian rubles 

(RUR) per month 1 

Gini 

index 2 

Population, 

thousand 

people, 

annual 

average 3 

Subregion 

weight  

(ni) Per capita 

(yi)  

Median 

(Mdi) 

Modal 

(Moi) 

0 Arkhangelsk Oblast 29,432 23,125 14,276 0.378 1,187.6  

1 Nenets AO 66,491 48,281 25,457 0.429 43.2 0.036 

2 Southern part 28,033 22,354 14,213 0.368 1,144.4 0.964 

0 Tyumen Oblast 38,523 27,508 14,026 0.439 3,563.8  

1 Khanty-Mansi AO 41,503 30,440 16,375 0.423 1,604.7 0.450 

2 Yamalo-Nenets AO 61,252 44,517 23,515 0.429 539.8 0.151 

3 Southern part 26,509 20,052 11,473 0.404 1,419.3 0.398 
1 Rosstat (2016a). 
2 Rosstat (2016b). 
3 Rosstat (2015, pp. 39–40). 

 

The Russian statistical agency, Rosstat (formerly, Goskomstat), models income 

distributions in regions and the whole country as log-normal ones (Goskomstat of Russia, 

1996, p. 79). The distribution parameters from Table 4 enable to restore log-normal income 

distributions for subregions of the regions under consideration, 

)
2

))(log(
exp(

2

1
)(

2

2

i

i

i

i

y

y
yf








 , where )log( ii Md  and 

)/log(2)/log(2

iiiii MdyMoMd  . Figure 4, (a) and (c), depicts these distributions.  

Estimating inequality in the whole country or – as in our case – a multi-regional entity  

from per capita incomes only (like the population-weighted indices do), a within-(sub)region 

income distribution is in fact represented as the delta function (x) which is zero everywhere 

except at zero and (0) =  so that 



1)( dxx (see, e.g., Kanwal, 2004).1  Denote such 

distribution in (sub)region i by gi(); then  gi(y) =  (y – yi). These distributions are represented 

in Figure 4 by vertical arrows starting at yi, a number near the arrowhead specifying the area 

under the function. 

The income distribution in the whole region can be computed either in the same way as 

the subregional distributions (from parameters of the distribution) or equally well as the 

                                                           

1 The delta function can be viewed as a limit: )2/exp(
2

1
lim)( 22

0






xx 


. 
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weighted sum of subregional distributions,  


m

i ii yfnyf
10 )()( . Similarly,  

 


m

i ii

m

i ii yynygnyg
110 )()()(  .            (7) 

Figure 4, (b) and (d), shows both f0(y) and g0(y). 
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(a) Subregions of the Arkhangelsk Oblast (b) Arkhangelsk Oblast as a whole 
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(c) Subregions of the Tyumen Oblast (d) Tyumen Oblast as a whole 

Figure 4. Income distributions in the Arkhangelsk and Tyumen Oblasts. 
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the variance is   






m

i wii

m

i ii yyndyyynyEyyVar
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)(
0 1
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00 )()())(()(  . Then the 

coefficient of variation coincides with that given by Formula (2), Var0(y)1/2/E0 (y) = CVw. 

Computing the Theil index for continuous distribution, we again get its weighted version, 

wThdyyg
yE

y

yE

y
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

)()
)(

ln(
)(

0
0

00

. Expressing the Gini index as )(/))(1)(( 00
0

0 yEdyyFyF 


 

(Yitzhaki & Schechtman, 2013, pp. 15–16 and 26), where F0(y) is the cumulative distribution 

function,  dyygyF )()( 00 , we arrive at Gw. (The derivation needs cumbersome mathematics 

and therefore is not reported.) Using f0(y) instead g0(y) in the above calculations, we would get 

the unweighted inequality indices, CV, Th and G, that measure inequality of the whole 

population of a region for the case of continuous income distribution. (This is one more proof 

of the fact that the population-weighted indices measure inequality between all individuals, 

and not between regions.)  

It is obvious – and clearly seen in Figure 4, (b) and (d), – that the approximation of the 

actual income distribution f0(y) by the weighted sum of delta functions, g0(y), is overly rough 

and therefore will never yield correct estimates of population’s inequality. In Table 5, the 

population-weighted estimates, Gw, are compared with the estimates of inequality between 

subregions, G, and estimates of region’s population inequality labelled Gpop. Because of small 

numbers of observations, G and Gw are standardized to range from 0 to 1 in order to make 

them comparable across regions. For the Arkhangelsk Oblast, the normalizing factor equals 2 

for G and 1/(1 – n1 ) = 1/0.964 for Gw; for the Tyumen Oblast, it is equal to 3/2 and 1/(1 – n2) 

= 1/0.849, respectively (for explanation, see Table 8 in the next section).  

 

Table 5. Estimates of inequality in the Arkhangelsk and Tyumen Oblasts.  

 
Region Measure Gini index,  

raw / standardized 

Average income, 

RUR 

Arkhangelsk Oblast Inter-subregional inequality (G) 0.203 / 0.407 y =  47,262 

 Population-weighted estimate (Gw) 0.046 / 0.048 
)(wy = 29,432 

 Population’s inequality (Gpop) 1 0.378  

Tyumen Oblast Inter-subregional inequality (G) 0.179 / 0.269 y = 43,088 

 Population-weighted estimate (Gw) 0.159 / 0.188 
)(wy = 38,523 

 Population’s inequality (Gpop) 1 0.439  
1 The official estimate from Table 4. 

 

The case of the Arkhangelsk Oblast resembles the example of China in the previous 
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section. Like in that example, there are two territorial units, one with big population and 

relatively small income per capita, and one with small population (3.6% of the total) and high 

income per capita (about 2.4 times higher than in the first unit). Although the difference 

between these subregions is not that dramatic as between mainland China and Macao, the 

estimation results are qualitatively similar. The weighted Gini index suggests low inequality, 

4.8% in percentage terms, while inequality between the Nenets AO and Southern part – 

measured by the unweighted index – is rather high, 40.7%. The latter reflects the fact that the 

average inhabitant of the Nenets AO is 2.4 times richer than the average inhabitant of the 

Southern part. As for population’s inequality, it equals 37.8%, only one percent point higher 

than inequality in the Southern part (see Table 4). A minor contribution of the Nenets AO to 

inequality in the whole oblast is just due to its small population. As it is seen in Figure 4, the 

overall income distribution in the whole Arkhangelsk Oblast, Figure 4 (b), differs from that in 

its southern part in Figure 4 (a) only slightly. The weighted Gini index – equaling 4.8% – fails 

to provide more or less adequate approximation of population’s inequality in the whole oblast 

as well. The weighted index severely understates inequality between both subregions and 

inhabitants of the whole Arkhangelsk Oblast.    

The case of the Tyumen Oblast involves three territorial units. They are closer to one 

another, both in incomes per capita and weights, than in the previous case. Smaller difference 

in incomes per capita results in smaller inequality between subregions (measured by G). The 

weighted index is again understated as compared to inequality between subregions and 

inhabitants of the whole Tyumen Oblast.  

The patterns provided by G and Gpop and the differences between them in the 

Arkhangelsk and Tyumen Oblasts can be easily explained. High inequality between the 

subregions of the Arkhangelsk Oblast is due to great difference in income per capita. 

Interpersonal inequality is smaller than regional one, remaining approximately close to 

inequality in the southern part of the oblast, since adding rich (on average) but small 

population of the Nenets AO only slightly changes the income distribution. In the Tyumen 

Oblast, inequality between the subregions is lower because of lesser differences in incomes 

per capita. At the same time, inequality of the whole population of the oblast, Gpop, is higher 

than regional one, G, and rises as compared to inequality in each subregion. The reason is the 

merging of poor (on average) population of the Southern part with richer (on average) 

population of AOs, population sizes of the subregions being comparable. As regards results 

suggested by Gw, they hardly can be intuitively explained.          
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It is worth noting that even the interpretation of a population-weighted inequality index 

as an approximate measure of interpersonal inequality of the whole country’s population is not 

always true. It holds only for indicators which can be assigned to an individual, e.g. personal 

income, wage, housing, education, etc. Otherwise the meaning of the population-weighted 

index is obscure. Estimating regional income inequality, many authors use regional GDP per 

capita to characterize incomes in regions. However, there is no inequality in the national GDP 

(as the total of regional GDPs) per capita between country’s citizens. There are many other 

indicators that characterize situation of a region, but cannot be assigned to its certain 

inhabitant, e.g. birth rate, investment per capita, crime rate, etc. In such cases, the population-

weighted inequality indices have no intuitive interpretation at all; it is totally incomprehensible 

what they measure. 

For example, Zubarevich & Safronov (2011) estimate, in addition to income inequality, 

regional inequalities in investment per capita, unemployment rate and poverty rate. Again, 

there is no, e.g. unemployment inequality between country’s inhabitants; only the national 

average unemployment rate exists. Consider a simple example. A country consists of two 

regions. The labouring population is made up of 15 million people in the first region and 5 

million in the second; unemployment rates are 40% and 20%, respectively. Then the 

unemployment rate in the country is 35%. With some trick, we can measure ‘unemployment 

inequality’ of the total labouring population. A person can be either employed, yi =1, or 

unemployed, yi =0. Measuring unemployment inequality of the given 20 million persons with 

the Gini index over so quantified {yi}, we get Gnat = 0.35, exactly the country-average 

unemployment rate. It can be easily checked that this is not a coincidence. Provided that the 

variable is binary, the Gini index always gives the percentage of zeros. At the same time, the 

population-weighted estimate yields Gw = 0.107; being standardized, it equals 0.107/(1 – 0.25) 

= 0.143. Both figures are far from the overall inequality Gnat as well as from inequality 

between regions, G = 0.167 (its the standardized value equalling 0.167/0.5 = 0.333.)    

 

4. Some Properties of the Population-Weighted Indices 

An adequate inequality index should satisfy a number of axioms, i.e., desirable properties of 

an inequality measure (see, e.g. Cowell, 2000). Ezcurra & Rodríguez-Pose (2009, pp. 332–

333) argue – with no proof – that a number of the population-weighted inequality indices, 

including the coefficient of variation and Gini and Theil indices, fulfil the basic axioms, 

namely, scale invariance, population principle, anonymity principle and principle of transfers 
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(the Pigou-Dalton principle). Similar assertions can be found in Kyriacou & Roca-Sagalés 

(2014, p. 188–189), Lessmann (2014, p. 37), Sacchi & Salotti (2014, p. 148–149) and 

elsewhere.  

Indeed, these indices are scale-invariant; the check is easy and straightforward. As 

regards the population principle, anonymity (symmetry) principle and principle of transfers, 

the population-weighted inequality indices violate them (while their unweighted counterparts 

do satisfy).  

The population principle (or replication invariance) states that a simple replication of the 

sample under consideration should not change the value of the inequality index. Let us 

replicate the income distribution (yi), along with the population distribution (ni), R times, 

indicating new values of variables by superscript (R). The population-weighted coefficient of 

variation takes the form 2/)1( 2)(  RRCVCV w

R

w ; it increases with rising R. The 

weighted Gini index becomes R times greater: w

R

w RGG )( . The weighted Theil index, 

contrastingly, diminishes: )log()( RThTh w

R

w  , taking on negative values. (Note that the 

weighted average also changes because of replication: )(

)(

)( w

R

w yRy  ). 

The violation of the anonymity and transfer principles will be proved below for the 

population-weighted coefficient of variation. Such proofs for the population-weighted Gini 

and Theil indices need more cumbersome mathematics; therefore only numerical examples 

will illustrate violations of these axioms by them. 

Adjusting Jenkins & van Kerm’s (2009, p. 52) definition to the case of regions, the 

anonymity principle requires the inequality index to depend only on per capita income values 

used to construct it and not additional information such as what the region is with a particular 

per capita income or what regional populations are. In other words, the index must be 

invariant to any permutation of income observations.  

Consider a cross-region income distribution y = (y1,…, yN) and its permutation y*, i.e.,    

y = (…, yi, …, yk, …) and y* = (…, yk, …, yi, …); the rest elements in y* remain the same as in 

y; hereafter yk > yi. One can expect the value of the population-weighted inequality index to 

change under such a transformation if for no other reason than it changes the weighted 

average: 

))(()()*()( ikkiwww yynnyyy  .           (8) 

It is seen that the weighted average remains intact only in the trivial case of ni = nk.  
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The change in the population-weighted coefficient of variation is characterized by the 

following equation: 
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where )(

2

wy  is the weighted average of squared incomes and 
2

)(wy  is the square of the 

weighted average; )(wy  is defined by Formula (8). Note that 1)(/ 22

)()(

2  yCVyy www ; hence, 

it always exceeds unity. Thus, 2
wCV  depends on six variables: yi, yk, ni, nk, )(wy , and )(

2

wy . 

(This number may be reduced by one, replacing the latter two variables with CVw(y).) The 

signs of the relationship 
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and )(wy  determine the sign of 2
wCV , hence the direction of change in the inequality 

measure: )sgn()1)(sgn()sgn( )(

2

ww yHCV  . Table 6 shows different possible cases. 

 

Table 6. Permutation-induced changes in the population-weighted coefficient of variation. 

 
 ni > nk ( 0)(  wy ) ni < nk ( 0)(  wy ) 

H() > 1 CVw increases CVw decreases 

H() < 1 CVw decreases CVw increases 

 

Given too many variables in H(), its behaviour is not amenable to more or less 

comprehensive formal analysis. It is possible for some particular cases only. For instance, if both yi 

and yk are less than the weighted average and ni > nk, then H() < 1 knowingly holds and CVw 

diminishes.  

In principle, the case of 02  wCV  is possible as well. Let all regions except i and k have 

the same per capita income yr. Then we can aggregate them into a single ‘region’ r with 

income yr and weight nr = 1 – (ni + nk). (Such a ‘region’ will be used elsewhere below.) In this 

instance H() = F(yi, yk, ni, nk; yr). Keeping all variables except yr constant, we can find the 

value of yr such that H(yr) = 1. Equation H(yr) = 1 is a cubic one with respect to yr; its closed-

form solution is very cumbersome and therefore is not reported. (In fact, we can dispense with 

it, solving the equation numerically.) This equation may have a real positive root, albeit not 
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always. However, no significance should be attached to this fact. First, probability of finding 

an actual cross-region income distribution (along with the population distribution) that 

satisfies H() = 1 even for some single pair of i and k seems to be close to zero. Second, 

particular cases of satisfying the anonymity principle do not matter at all, while the only (non-

degenerate) case – even a single numerical example – of its violation would evidence that the 

inequality index under consideration does have this unpleasant property. 

Table 7 provides numerical examples that illustrate four cases listed in Table 4 and the 

case of no change in the population-weighted coefficient of variation. It tabulates three income 

distributions and their permutations – (A), (B) and (C), the population distribution n = (nj) 

being uniform across these. Although 0)(  wy  holds for all three cases of transition from y to 

y*, we can also consider reverse transitions from y* to y, exchanging indices i and k. In these 

transitions, 0)(  wy . Along with the coefficient of variation, the table reports the population-

weighted Gini and Theil indices as well as unweighted inequality indices. 

 

Table 7. Permutation-induced changes in the population-weighted inequality indices. 
 

Region 

index 

n (A) (B) (C) 

y y* y y* y y* 

i 0.15 150 300 150 300 150 300 

k 0.05 300 150 300 150 300 150 

r 0.80 400 400 100 100 218.9 218.9 

)(wy   357.5 372.5 117.5 132.5 212.62 227.62 

CVw  0.251 0.167 0.387 0.537 0.149 0.149 

Gw  0.098 0.062 0.129 0.205 0.059 0.060 

Thw  0.039 0.017 0.057 0.115 0.011 0.011 

CV  0.363 0.464 0.275 

G  0.196 0.242 0.149 

Th  0.070 0.104 0.038 

 

Case (A) is that of diminishing values of the population-weighted inequality measures 

caused by the exchange of incomes between two regions; H() < 1 here. The decrease is fairly 

sizeable, equalling more than one third for CVw and more than a half for Thw. Considering the 

reverse transition, we have 0)(  wy  and H() > 1; the permutation of regional incomes causes 

the weighted inequality indices to rise. In case (B), the effect of permutation in y is an increase 

in the weighted indices, as H() > 1; the reverse permutation has the adverse effect. At last, the 

permutation does not change the weighted coefficient of variation in case (C). Interestingly, 

the weighted Gini and Theil indices are also near-invariant in this case: Gw = 3.710–4 and 
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Thw = 5.510–4.  

The indices under consideration range from 0 (perfect equality) to some index-specific 

maximum (perfect inequality). Perfect inequality implies that income is nonzero in a sole 

region, say, k. The second column of Table 8 lists the maxima of CV, G and Th. They depend 

on the number of country’s regions, m, only. The violation of the anonymity principle by the 

population-weighted inequality indices has a crucial corollary: they have no unambiguous 

maxima. The value taken on by such an index in the case of perfect inequality depends on 

which specific region k possesses all country’s income. The relevant maxima are listed in the 

third column of Table 8. 

 

Table 8. Maxima of unweighted and weighted inequality indices. 

 
Index Unweighted Population-weighted 

Coefficient of variation 1m  1/1 kn  

Gini index (m – 1)/m 1 – nk 

Theil index log(m) log(1/nk) 

 

The variability of the upper bounds of inequality indices matters in at least two cases. 

First, to judge how great inequality is from an estimate obtained, we should know how far it is 

from perfect inequality. Therefore it would be desirable to standardize inequality indices, i.e., 

to normalize them to their maxima so that they range from 0 to 1 (the Gini index needs such 

normalization only if the number of regions is small, when (m – 1)/m is not sufficiently close 

to 1). Second, differences in ranges of inequality indices make inequalities incomparable 

across countries. Lessmann (2014, p. 37) notes that the Theil index is not applicable for cross-

country comparison for this reason. However, as it is seen from Table 7, this all the more 

holds for the coefficient of variation. For example, Williamson’s (1965) results are not 

comparable across countries, as the number of regions varies in his sample from 6 to 75. Thus, 

the respective maxima of CV differ by the factor of more than 3.8. The normalization of 

inequality indices would solve this problem.  

However, Theil (1967, p. 92) objects to normalization, giving an example of two 

situations. The first society consists of two individuals, only one of them having nonzero 

income; in the second society, all income belongs to the only of two million persons. The 

second society is evidently much more unequal. Nonetheless, considerations of cross-country 

comparability and uniform ‘benchmark’ of perfect inequality seem more important than 

Theil’s argument (the more so as the number of regions does not differ that dramatically 
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across countries). 

In the case of the population-weighted indices, the normalization turns out ambiguous. 

We could take the ‘maximum of maxima’, assigning k to the least populated region. (It is such 

maxima that have been used to standardize the population-weighted indices in Tables 3 and 5.) 

All the same, this ‘global maximum’ would depend on the cross-region distribution of 

country’s population. Then the values of a weighted inequality index are not comparable even 

between countries with the equal number of regions. Moreover, such ‘benchmark’ of perfect 

inequality may vary over time in the same country with varying nk (or even k, if some other 

region becomes the least populated one).  

Let us turn to the principle of transfers which “is usually taken to be indispensable in 

most of the inequality literature” (Cowell, 2000, p. 98). Let cross-region income distribution y 

= (…, yi, …, yk, …) be transformed into y* = (…,y*i = yi + , …, y*k = yk – ,  …), where y*j = 

yj for j  i, k, and 0 <  < max = (yk – yi)/2, thus keeping region k still richer than i. Then the 

weighted average changes: )()()*()( kiwww nnyyy  . The principle of transfers 

requires the inequality index to decrease under such a transformation. This requirement for the 

weighted coefficient of variation (denoting CVw*  CVw(y*)) can be represented as 
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Condition (10) unambiguously holds only if niy*i < nky*k and ni > nk, as both summands 

in the right-hand side of the equation have negative sign. However, as   rises, y*i and y*k 

become progressively closer to each other, which inevitably causes niy*i – nky*k  to change its 

sign to positive. When the signs of summands in the right-hand side of Equation (10) are 

different (in the case of ni < nk they always are), the resulting sign of their sum depends on 

particular combination of y, n and the value of . Then it is not inconceivable that the 

derivative of CVw* is positive somewhere in the definitional domain of , so violating the 

principle of transfers. 

 To show that dCVw*/d > 0 is possible, consider the case when the transfer is close to 

the right bound of its domain,    (yk – yi)/2. Then y*i  y*k  (yk + yi)/2. In this instance, 

provided that ni > nk, dCVw*/d > 0 if )*(

2

* )1(2/)( wwki yCVyy  . Let )*()1( wi yy   and 

)*()1( wk yy  (note that  may be negative), then the latter inequality looks like 

2

*2/)( wCV  . Such a relationship is fairly realistic. Usually CVw* < 1, therefore  and  
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should not be too great. For example, if CVw* = 0.7, the principle of transfers will be violated 

with, say, )*(2.1 wi yy   and )*(8.1 wk yy   in the neighbourhood of )(*3.0 wy , or with 

)*(9.0 wi yy   and )*(1.2 wk yy   near )(*6.0 wy . Note that with ni > nk, a necessary condition 

for dCVw*/d > 0 is exceedance of the weighted average by yk, 

)()()*( )( wkiwwk ynnyyy   . 

Provided that ni < nk, dCVw*/d > 0 if )*(

2

* )1(2/)( wwki yCVyy  . This inequality 

obviously holds when both yi and yk are below the weighted average )*(wy , or when   –. It 

also may be true if both variables are above )*(wy , e.g. with )*(1.1 wi yy   and )*(8.1 wk yy   

near )(*35.0 wy , given that CVw* = 0.7. 

Considering CVw* as a function of transfer, CVw(y*) = CVw() (then CVw(y) = CVw(0)), 

we can distinguish four types of its behaviour (depending on particular y and n). They are 

depicted in Figure 5, with CVw() normalized to CVw(0) and  normalized to max.  
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1
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Figure 5. Different types of behaviour of CVw(). 

Note: for all curves, n = (0.15, 0.05, 0,8); for curve 1, y(1) = (100 + , 300 – , 420); for curve 

2, y(2) = (100 + , 300 – , 350); for curve 3, y(3) = (100 + , 300 – , 300);  for curve 4, y(4) = 

(100 + , 300 – , 30). 

 

Type 1 is a monotonic rise in the weighted coefficient of variation everywhere in the 

definitional domain of . In type 2, CVw() decreases at first and then rises (i.e. dCVw*/d 

changes its sign from negative to positive). Starting with some , it reaches the initial value, 
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CVw(0), and then exceeds it more and more. Type 3 is qualitatively similar to type 2, except 

for CVw() does not reach the initial value by the end of the domain of . At last, type 4 is a 

monotonic decreasing CVw(). 

The weighted Gini and Theil indices have the same four types of behaviour. A 

peculiarity of the Gini index is a break on curve Gw() in some point (instead of a smooth 

inflection) in the case of behaviour of types 2 and 3. However, given the same y and n, Gw() 

and Thw() may differ from CVw() in the type of behaviour. For instance, curves of the 

weighted Gini index corresponding to y(1) , y(2) and y(3) in Figure 5 behave according to type 1; 

the behaviour is similar to that of CVw() only in the case of y(4). Curves of the weighted Theil 

index corresponding to y(2) , y(3) and y(4)  in Figure 5 have the same type of behaviour as 

CVw(), while behaviour of type 2 corresponds to y(1).     

The violations of the principle of transfers have important implications for empirical 

studies. Let we study the evolution of income inequality in some country (assume that the 

population distribution remains invariant). Provided that the behaviour of the population-

weighted inequality measure is of type 1, we would observe increasing inequality with income 

gaps between regions of the country becoming progressively smaller over time. In the case of 

behaviour of types 2 and 3, the results will appear even more striking and unaccountable. At 

first, inequality falls with decreasing income gaps, as could be expected; but then from some 

point on, further decrease in the income gaps leads to rise in inequality. 

Certainly, the situation is much more involved in actual empirical studies. For example, 

the population-weighted inequality measure may have varied types of behaviour for different 

region pairs (i, k); besides, an increase in per capita income in the poorer region of a pair is not 

equal, as a rule, to decrease in the richer region. But the above results evidence that in any case 

these features of the population-weighted inequality measures will produce (unpredictable) 

distortions in the pattern of the evolution of inequality. 

Usually (albeit not always), dynamics of inequality obtained with the use of different 

unweighted inequality measures, say, the coefficient of variation, Gini and Theil indices, is 

qualitatively similar, having the same directions of change in inequality and their turning 

points. Since different population-weighted indices computed on the same data may have 

different types of behaviour, they can provide quite diverse patterns of the evolution of 

inequality in a country, depending on a particular index applied.        

Table 9 gives numerical examples of violating the transfer principle for cases (A) ni < nk 
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and (B) ni > nk. It tabulates results for the baseline distribution y and its transformations y*() 

with  = 10 and  = 90 (max = 100).  

 

Table 9. Transfer-induced changes in the population-weighted inequality indices. 

 
Region 

index 

(A) (B) 

n y y*(10) y*(90) n y y*(10) y*(90) 

i 0.05 100 110 190 0.18 100 110 190 

k 0.15 300 290 210 0.02 300 290 210 

r 0.80 370 370 370 0.80 110 110 110 

)(wy   346.0 345.0 337.0  112.0 120.0 126.4 

CVw  0.178 0.177 0.196  0.242 0.222 0.260 

Gw  0.060 0.062 0.079  0.046 0.031 0.104 

Thw  0.021 0.020 0.022  0.020 0.017 0.030 

CV  0.446 0.424 0.314  0.541 0.499 0.254 

G  0.234 0.225 0.156  0.261 0.235 0.131 

Th  0.114 0.101 0.047  0.136 0.116 0.035 

  

In case (A), the population-weighted coefficient of variation and Theil index have 

behaviour of type 2. Their values decrease with the small transfer  = 10 and increase with the 

greater transfer  = 90. The weighted Gini index behaves according to type 1, its value rising 

with both transfers. In case (B), all three weighted indices have behaviour of type 2, falling 

with  = 10 and rising with  = 90. Figure 6 illustrates this case graphically for the whole 

domain of . 
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Figure 6. Population-weighted indices as functions of transfer. 

Note: the dashed lines correspond to initial levels (with  = 0) of the indices.  
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Transfers apart, let us consider case (B) in Table 6 as a pattern of income evolution over 

three periods, t = 0, 1, 2: y = y0, y*(10) = y1 and y*(10) = y2. Cross-region income distribution 

y1 is evidently more even than y0; the poorest and richer regions converge to each other; both 

weighted and unweghted indices indicate diminishing inequality. Then convergence continues; 

these regions become further closer to each other in y2. The unveighted indices show further 

decrease in inequality. However, the weighted indices rise (becoming even greater than for y0), 

indicating divergence. The same takes place in similarly interpreted case (A). Thus, contrary 

to Ezcurra & Rodríguez-Pose’s (2009, p. 332) assertion, it is the weighted inequality 

measures, and not the unweighted ones, that may lead to unrealistic results, affecting our 

perception of convergence or divergence. 

 

5. Contras and Pros 

Williamson’s approach to measuring regional inequality did receive some criticism in the 

literature. Metwally & Jensen (1973) point out:   

Williamson’s coefficient […] fails to take into account either the dispersion of incomes 

nationally, or what is more important in a spatial context, the dispersion of incomes 

within regions. […] It is possible for this coefficient to decrease over time, suggesting a 

convergence in regional mean incomes, while dispersion in actual incomes could show 

an opposite trend. (Metwally & Jensen, 1973, p. 135) 

As it is seen, the authors mean measuring national (interpersonal) inequality; therefore their 

criticism is beside the point. But Williamson (1965) in no way intended to estimate inequality 

among countries’ populations. There is not a grain of evidence of such purpose in his paper; 

quite the contrary, he highlights throughout the paper that he deals with regional inequality.  

Fisch (1984) raises a similar objection:  

Williamson’s coefficients of variations ignore a […] critical issue in relation to spatial 

inequality: the unequal regional distribution of population by income class. (Fisch, 1984, 

p. 91) 

Again, the case in point is inability of the population-weighted coefficient of variation to 

adequately approximate interpersonal income inequality in the whole country. 

In fact, objections due to Metwally & Jensen (1973) and Fisch (1984) are not those to the 

population weighting. The essence is in that they believe the national inequality rather than 
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regional one to be more proper for Williamson’s (1965) research.   

Parr (1974) considers a different aspect; he notes:  

[T]he value of the [Williamson] index is likely to be influenced by the regionalization 

scheme employed, and there will be a tendency for the value of the index to be high 

when the regionalization involves a relatively large number of regions. (Parr, 1974, p. 

84) 

This is so indeed concerning the unweighted coefficient of variation with its maximum rising 

as the square root of the number of regions (see Table 8), but it is not true for the population-

weighted index in the general case (as it has been shown in the previous section). The further 

Parr’s note is connected with the weighted index though:  

[T]here is no way of knowing whether the official statistical regions on which the index 

is based reflect the extent of spatial income differentiation, given the particular number 

of regions involved. (Parr, 1974, p. 84) 

To manage with this problem, the author suggests a bootstrap procedure of placing a number 

of points, corresponding to the number of official regions, at random over the territory of the 

country, thus obtaining a standard of spatial income differentiation against which the original 

index could be compared. It is not entirely clear what Parr means, but it seems that this 

procedure would yield something like an approximation of the maximum of 1/1 in .  

Thus, the above considerations do not concern the main sin of the population-weighted 

indices, their failure in providing unbiased estimates of regional inequality (as well as their 

unpleasant properties as inequality measures at all). It is not inconceivable that such criticism 

exists somewhere in the literature; however, I failed in finding it. 

Let us turn to arguments in favour of the weighting inequality indices by population. 

Almost all of them are based on intuitive considerations, being in fact extended versions of 

Williamson’s (1965) statement cited in the Introduction. Lessmann’s (2014) reasoning is 

typical for arguments of such kind: 

[The unweighted inequality measures] cannot account for the heterogeneity of regions 

with respect to (population) size. This is a very important issue […] due to the lack of a 

uniform territorial classification for all countries […]. In countries with large economic 

differences and a very unequally distributed population, an unweighted inequality 

measure might be difficult to interpret. An example should illustrate the problem. The 
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northern Canadian Territories are much poorer than the provinces to the south, so that an 

inequality measure might indicate large economic differences, although very few people 

are actually poor (note that the Territories are inhabited by only 100,000 people in total). 

(Lessmann, 2014, p. 37) 

The example in this quotation evidently relates to inequality of the whole population of 

Canada, and not to inequality between regions. Indeed, adding ‘very few people’ living in the 

Canadian territories to the huge population of the rest of Canada, overall inequality changes 

only slightly. But this does not imply that there is no inequality between ‘average’ inhabitants 

of the Territories and the provinces to the south. An analogy may be, e.g., earnings inequality 

between generals/admirals and other military personnel in the US Armed Forces. ‘Per capita’ 

salary of the former is al least three times higher than that of the latter, which implies rather 

high inequality. Comparing these ‘per capita’ salaries, why should we care about the 

percentage of generals/admirals in the Armed Forces? Provided that this percentage is very 

small, 0.069% (Kapp, 2016, p. 5), the value of any weighted inequality index will be close to 

zero, thus suggesting no (significant) inequality between generals/admirals and other 

servicemen. The example of Canada is worth considering in more detail with the use of actual 

data reported in Table 10. 

 

Table 10. Personal income and population in Canada, 2013. 

 
Region Total income, 

million 

Canadian 

dollars 1 

Population, 

thousand 

people 2 

Income per 

capita, 

Canadian 

dollars 

Region 

weight 

Region 

weigh 

among 

provinces 

Canada 1,222,216 35,102 34,819   

Provinces 1,217,972 34,986 34,813 0.997  

Newfoundland and Labrador  18,027 528 34,158 0.015 0.015 

Prince Edward Island  4,241 145 29,228 0.004 0.004 

Nova Scotia  29,378 944 31,125 0.027 0.027 

New Brunswick  22,693 756 30,025 0.022 0.022 

Quebec  257,579 8,144 31,626 0.232 0.233 

Ontario  468,655 13,538 34,618 0.386 0.387 

Manitoba  38,445 1,264 30,419 0.036 0.036 

Saskatchewan  39,114 1,102 35,487 0.031 0.032 

Alberta  181,359 3,979 45,577 0.113 0.114 

British Columbia  158,481 4,586 34,556 0.131 0.131 

Territories 4,244 115 36,832 0.003  

Northwest Territories  1,816 36 50,160 0.001  

Yukon  1,439 44 32,890 0.001  

Nunavut  989 35 28,042 0.001  
1 Canada Revenue Agency (2016). Returns from outside Canada are excluded. 
2 Statistics Canada (2016a). Annual average (the arithmetic mean of quarterly estimates). 
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Population of three Canadian territories comprise only 0,33% of the total country’s 

population. Here are the poorest and richest regions of Canada, the difference in incomes per 

capita between them equalling 79%. As compared with the richest region among provinces, 

Alberta, income per capita there is 63% higher than in Nunavut. Contributing to the total 

population one order of magnitude smaller than the Nenets AO in the example from Section 3 

(see Table 4), all three territories much less are able to change the overall income inequality in 

the country. This notwithstanding, the average inhabitant of Nunavut remains 1.6 times poorer 

than the average inhabitant of Alberta. It does not matter a hoot for this fact that they are only 

35 thousand in number. 

Table 11 presents estimates of inequality measures in two spatial samples: for all 

Canadian regions and for provinces only (i.e., excluding the northern territories). Note that 

only standardized values are comparable across the samples, since these differ in the number 

of regions as well as in the least populated regions; the normalizing factor for CVw, 

1/1/1 kn , equals 0.032 for all Canadian regions and 0.065 for provinces only. 

 

Table 11. Estimates of income inequality in Canada.  

 
Index Unweighted Population-weighted  

 Raw Standardized Raw Standardized 

All regions 

Coefficient of variation 0.180 0.052 0.120 0.004 

Gini index 0.089 0.096 0.054 0.054 

Theil index 0.015 0.006 0.007 0.001 

Provinces only 

Coefficient of variation 0.133 0.044 0.119 0.008 

Gini index 0.065 0.072 0.054 0.054 

Theil index 0.008 0.004 0.007 0.001 

 

The unweighted indices indicate a decrease in inequality between regions when the 

territories are deleted from the spatial sample. It is quite understandable, as both the richest 

and poorest regions are excluded. The weighted Gini (as well as Theil) index remains 

invariant, as if measuring overall population’s inequality But it is by no means close to the 

Canadian Gini index for 2013 equalling 0.358 (Statistics Canada, 2016b). Thus the weighted 

Gini index considerably underestimates both regional and interpersonal inequalities. The 

(standardized) weighted coefficient of variation behaves strikingly; it doubles when the 

northern territories are eliminated, suggesting a rise in inequality. Then what is difficult to 

interpret, the unweighted or weighted coefficient of variation?  
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Gisbert (2003) gives the reason for the weighting by population in a kernel density of 

cross-country income distribution, based on reasoning essentially similar to that in Lessmann 

(2014), albeit in the international context.  As he points out, 

[Unweighted kernel density] abstracts from the ‘size’ of the different countries. […] 

[T]he world income distribution in terms of countries […] can be highly misleading, for 

example if we drew national borders differently this would affect the shape of the 

densities […]. The natural alternative is to attach a weight to the observations where the 

weights reflects the contribution of each observation in the sample. In our example, per 

capita GDP, the obvious weight is the population (POB) of each country. […] 

[P]opulation is very unevenly distributed among countries; for example China and India, 

two of the poorest countries, account for more than one third of the total population in 

the world, on the other side some of the richest countries, like Iceland or Luxembourg, 

only account for 0.01% of the world population. It does not seem fair to treat all these 

countries equally in estimation. (Gisbert, 2003, p. 337–338) 

This reasoning again relates to the whole population, this time, of the world. Returning 

to the example of the US Armed Forces, let us draw the ‘border’ in such a way as to add 

colonels/navy captains to generals/admirals. Certainly, the ‘cross-rank’ earnings distribution 

as well as inequality between this group and the group of other servicemen changes, while the 

earning distribution and inequality in the whole US Armed Forces remains intact. However, 

the case at hands is two different phenomena, first, inequality between an (‘average’) high-

rank officer and (‘average’) serviceman with no high rank and the relevant earnings 

distribution, and second, inequality in the whole military personnel and cross-person earnings 

distribution in the US army.    

The kernel density estimator is a standard way of constructing continuous distribution 

from a set of m discrete observations (Silverman, 1986). It is defined as (in notation of this 

paper): 
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where h is the smoothing bandwidth which depends on the number of observations, m, as well 

as on parameters of the source distribution (yi); K() is a kernel function. Considering regions 

instead of countries, f(y) is an estimate of cross-region income distribution (to be exact, the 

probability density). Based on his reasoning, Gisbert (2003, p. 338) modifies Formula (11) in 
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the following way: 

)(/)()(
1

*

1

*

0  





m

i ii

m

i

i
i ygnh

h

yy
Knyg .          (12) 

This formula resembles Formula (7) in Section 3. The similarity is not formal; the 

essence of Formulae (7) and (12) is the same. Both approximate cross-person income 

distribution in the whole territory consisting of m territorial units. The difference is in that the 

delta function representing within-region income distribution gi(y) in Formula (7) is replaced 

by an arbitrary – with respect to the actual within-region distribution – function )(* yg i  in 

Formula (12). A number of functions can serve as the kernel in Formulae (11) and (12). To be 

specific, employ the Epanechnikov kernel: )
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ii /)()(*  . Figure 7 shows such proxies of 

the regional income distributions (in the left panel) and income distribution of the whole 

population (in the right panel) as applied to the example of the Tyumen Oblast from Section 3. 
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(a) Subregions of the Tyumen Oblast (b) The Tyumen Oblast as a whole 

 

Figure 7. Proxies of income distributions in the Tyumen Oblasts. 

Note: f0(y) is drawn from Figure 4 (d). 

   

In this example, h = 0.9(4)0.1(15/m)–0.2 = 22.756, where   = standard deviation of 

yis. It artificially ‘imputes’ income dispersion to regions; as a result, ))(( *

0 ygCV , ))(( *

0 ygG  

and ))(( *

0 ygTh  are not equal to CVw, Gw and Thw, respectively. Nonetheless, the former also 
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do not provide adequate estimates of population’s income inequality. Comparing Figure 7 (a) 

with Figure 4 (c), it is seen that the ‘imputed’ regional distributions )(* yg i  are far from being 

similar to the actual distributions fi(y). Owing to this, their weighted sum (weighted kernel 

density estimate) )(*

0 yg  is a severely distorted proxy of the actual population income 

distribution f0(y) as Figure 7 (b) evidences. 

Petrakos et al. (2005, p. 1839–1840) derive the need for the population weighting from a 

critique of the -convergence methodology. According to them, analysis of -convergence can 

distort the perception of convergence trends, since it neglects relative sizes of regions. To 

illustrate this statement, the authors offer a simple three-region example. Table 12 tabulates this 

example (Petrakos et al., 2005, p. 1840), supplementing it with estimates of different inequality 

measures, both unweighted and population-weighted (with no normalization). Among them,  

stands for the standard deviation of log income and w is its population-weighted counterpart. 

   

Table 12. Inequality estimates in Petrakos’ et al. (2005) example. 

 
Region Population n y(t) y(t+), scenario 1 y(t+), scenario 2 

A 4.0 0.714 20 25 25 

B 1.5 0.268 14 15 15 

C 0.1 0.018 6 7 8 

)(wy    18.143 22.000 22.018 

CV / CVw   0.430 / 0.172 0.470 / 0.221 0.436 / 0.218 

G / Gw   0.233 / 0.075 0.255 / 0.099 0.236 / 0.098 

 / w   0.505 / 0.215 0.523 / 0.271 0.466 / 0.261 

Th / Thw    0.100  / 0.017 0.115 / 0.027 0.097 / 0.026 

 

The initial state, y(t), is compared with a final state, y(t+), under two scenarios. 

Regarding scenario 1, both -convergence analysis and all inequality indices unambiguously 

indicate income divergence. However, -convergence occurs under scenario 2, while CVw 

suggests divergence. Petrakos et al. (2005) assign this to the fact that fast growth of small 

region C (by 33%) blurs the picture when all regions are treated as equal, whereas CVw 

accounts properly for the relative importance of region C and therefore adequately indicates 

divergence. However, the unweighted indices CV and G also indicate divergence under 

scenario 2. At the same time,  and Th suggest convergence. Hence the weighting is not the 

case; the point is that specific inequality measures differ in sensitivity to changes in income 

distribution (Lambert, 2001). As for -convergence, it results from diminishing   under 

scenario 2. Wodon & Yitzhaki (2006) prove that from -convergence follows -convergence 
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(but the converse is not true: -convergence does not necessary implies -convergence). All 

weighted inequality indices, indeed, indicate divergence under scenario 2. However, this is a 

particular case. For example, if population of region C were 1.0 instead 0.1, w would suggest 

convergence, being equal to 0.451 in the initial state and 0.439 under scenario 2. 

A sole attempt to justify the need for weighting by population through quantitative 

analysis is due to Portnov & Felsenstein (2010). They explore the sensitivity of four 

unweighted and population-weighted inequality measures to changes in the ranking, size and 

number of regions into which a country is divided, explicitly treating regions as groups of 

people. One of their tests consists in comparison between two situations that differ in the 

cross-region population distribution and national per capita income, keeping the cross-region 

income distribution invariant. Surprisingly, the values of the unweighted indices change across 

the situations, although they should not, being independent of the population distribution. A 

closer look shows that this is due to the mistaken use of )(wy  instead of y  in calculation of 

these indices. In one more test, the population distribution randomly changes, the cross-region 

income distribution and national per capita income being kept constant. As can be expected, 

the weighted inequality indices react to these changes, while the unweighted ones remain 

constant. The authors believe the latter to be a shortcoming. They conclude: 

These [unweighted] indices may thus lead to spurious results when used for small 

countries, which are often characterized by rapid changes in population patterns. 

(Portnov & Felsenstein, 2010, p. 217) 

They also conclude that the population-weighted indices – the Williamson coefficient of 

variation, Gini index and Coulter coefficient – may be considered as more or less reliable 

regional inequality measures (Portnov & Felsenstein, 2010, pp. 217–218). Both conclusions 

are fallacious. Explicitly treating regions as groups of people, the authors implicitly deal with 

the estimation of interpersonal inequality in the country, misinterpreting it as the estimation of 

regional inequality. Therefore, their results in no way can be deemed a proof of the use of 

weighting. 

The above considerations show that supporters of the weighting by population confuse 

inequality between regions (i.e. between representative inhabitants of regions) and the overall 

interpersonal inequality. According to them, the population weights should reflect the 

contribution of each territorial unit. But, contribution to what? They interpret it as a 

contribution to inequality between regions, while in fact it is a (proxy of) contribution to 
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inequality between all inhabitants of the set of territorial units under consideration. 

Studies on international inequality also widely use the population-weighted indices. 

From all appearances, economists engaged in studies of international inequality ‘reinvented’ 

Williamson’s approach. In contrast to regional researchers (who sometimes perform 

international studies as well), they are aware of the conceptual distinction between unweighted 

and population-weighted inequality indices, explicitly interpreting the latter as approximate 

measures of inequality among the world population, and not between nations. A surprising 

thing is that as if there is a barrier between the literature on regional inequality and that on 

international inequality. The former almost never references to the latter (Akita et al., 2011, 

can be mentioned as one of extremely rare examples). The conversance with the literature on 

international inequality would surely prevent regional researchers from misinterpreting the 

population-weighted indices as measures of regional inequality. 

While the literature on regional inequality does not discuss need for the population 

weighting in inequality indices, getting by short notes like those cited throughout this paper, 

the literature on international inequality widely debates the question ‘To weight or not to 

weight?’. Both viewpoints are considered in detail by e.g. Firebaugh (2003) and Ravallion 

(2005). Under interpretation of the population-weighted estimates as proxies of inequality 

among the world population, the arguments in favour of weighting look reasonable; at least, 

they are seriously substantiated.  

However, the results of applying the population-weighted indices for estimation of 

global inequality are disappointing as, e.g., the results due to Milanovic (2012) cited in the end 

of Section 2 suggest. This is of no surprise in the light of the above exposition. As Milanovic 

(2005, p. 10) notices, population-weighted inequality “deals neither only with nations nor 

individuals but falls somewhere in between”. (In fact, this is not always true; it may fall below 

the both as examples of Russia in Table 5 and Canada in Table 11 evidence.) He also accepts 

that it may be misleading (Milanovic, 2012, p. 8). Worse yet, this is the prevailing situation as 

it is proved in Section 3: estimates of interpersonal inequality with the use of the population 

weighting are always severely distorted.   

The debate regarding the population weighting in the literature on international 

inequality focuses on the issue of what an adequate characterization of inequality in the world 

is, either inter-country inequality or interpersonal inequality among the world population. In 

my view, this debate is fairly pointless. It must be agreed with Firebaugh (2003), who notes 

that the answer depends on the goal: 
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[T]he issue of unweighted versus weighted between-nation inequality reduces to this 

question: are we interested in between-nation income inequality because of what it tells 

us about the average difference between nations’ income ratios, or because of what it 

tells us about the average difference between individuals’ income ratios? (Firebaugh, 

2003, p. 129) 

At last, one more issue needs to be touched upon. Exploring determinants of regional 

inequality with the use of population-weighted inequality indices, some authors, e.g. Kyriacou 

& Roca-Sagalés (2014) and Lessmann (2014), also employ unweighted indices for robustness 

checks. Such a way seems contradictory. On the one hand, if the authors believe unweighted 

measures to distort perception of inequality, then why should these measures confirm results 

obtained with the use of ‘adequate’ measures? On the other hand, if they do confirm, then why 

do we need the weighting?       

 

6. Conclusions 

Following Williamson (1965), many economists estimate regional inequality with the use of 

indices weighted by regions’ shares in the national population. Analysis in this paper shows 

that this approach is conceptually inconsistent. Instead of an estimate of regional inequality, 

we get a rough estimate of interpersonal inequality among the whole population of the country 

(and this estimate makes sense only if it deals with indicators applicable to an individual). 

Therefore the population-weighted estimates of inequality are biased with regard to estimates of 

both regional inequality (as they measure a different value) and interpersonal inequality (as they 

do not and cannot take account of within-region income disparities). In both cases, the result may 

be not only distorted, but also quite misleading. Thus the population-weighted inequality indices 

never give adequate results. 

Moreover, the population-weighted inequality indices do not satisfy requirements for an 

adequate inequality measure. They violate three of four basic axioms, the population, anonymity 

and transfer principles. This may lead to estimates of inequality evolution that contradict common 

sense. One more consequence is the absence of unambiguous maxima of the population-weighted 

inequality indices. This makes it impossible to standardize estimates of inequality with the aim of 

cross-time or cross-country comparability.  

Thus, it can be concluded that the application of the population-weighted indices to 

measuring regional inequality is nothing but a fallacy. 
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