

Climate and Weather Impacts on Agriculture: The Case of Brazil

Paula Carvalho Pereda Denisard C. O. Alves

RSA Global Conference Brazil Fortaleza - 29th April 2014

Outline

- 1. Introduction
- 2. Methodology
- 3. Climate Change and Brazilian Agriculture
- 4. Extreme Weather Events' Impact on Agriculture
- 5. Policy Discussion
- 6. Future research and limitations

Brazilian Regions

- Brazil is one of the main grain producers and exporter.
 - No. 1: Sugar, Coffee, beef, tobacco, timber
 - No.2: Soybeans,
 - No. 3: Corn/Maize
- The country has large climate variability.
- This article focuses on the measurement of specific climate effects on agriculture.
- Climate is an important factor influencing agricultural production.

Average Temperature from 1975 to 2005 by season, in °C

Average Monthly Rainfall from 1975 to 2005 by season, in mm

Average Relative Humidity, 1975 to 2005 by season, in %

Climate/Weather has important impacts on agricultural activities:

Climate might be a direct input for crop and animal production:

- planning decision of producers
- land use configuration

Climate can be a determinant of crop/livestock failure/loss of productivity:

- RS and SC states calculated US\$ 480 million of losses due to droughts in the summer of 2012 (maize, dairy products and beans)
- soybean production in South America fell 3% due to adverse weather in 2012
- contribute to the existence of rural poverty

Introduction: Questions

Understanding Agriculture:

Relevant for food safety nowadays and in the future

Questions:

- 1. How will climate changes, if confirmed, affect farmers' profits and production in Brazil?
- 2. How can farmers adapt to deal with such possible changes?
- 3. Do extreme weather events divert Brazilian farmers from their optimal outcome?
- 4. What is the estimated magnitude of damages caused by extreme weather events?
- 5. How can farmers deal with extreme weather events?

Main hypotheses:

- Farmers observe the average climate of the region and use this information to decide production (optimally): Suggesting a producer theory approach (microeconomics)
- II. Deviations from the average climate (such as extreme events) might deviate farmers from their above mentioned optimal choices: Suggesting the inclusion of an <u>efficiency</u> <u>analysis</u> inside the producer theory approach (market failure)

Model: Profit frontier function

Producers maximize a profit function by choosing:

- Agricultural outputs (products)
- Production variable inputs (labor, fertilizers)

Producers are aware of the:

- historical climate of the regions
- Historical prices of the products and inputs
- Available technology
- Soil quality
- Production fixed inputs (capital and land)

Extreme events are one of the factors that frustrate the producers plans of producing by deviating them from the optimal

Long-term approach: Translog profit frontier analysis

$$\begin{aligned} &\ln\left(\frac{\Pi}{p_{1}}\right) \\ &= \beta_{0} + \sum_{j>1} \beta_{j} ln(p_{j}/p_{1}) + \frac{1}{2} \sum_{j>1} \sum_{k>1} \beta_{jk} ln(p_{j}/p_{1}) ln(p_{k}/p_{1}) \\ &+ \sum_{j>1} \sum_{r=1}^{f} \gamma_{jr} Z_{jr} ln(p_{j}/p_{1}) + \sum_{r=1}^{f} \delta_{r} Z_{r} + \frac{1}{2} \sum_{h=1}^{f} \sum_{r=1}^{f} \theta_{hr} Z_{h} Z_{r} \\ &- \tau \end{aligned}$$

- *p*: is the vector of prices (output / input)
- Z denotes quasi-fixed factors (long-term climate / technology / soil quality other inputs)
- τ represents the inefficiency component

Short-term approach:

Identify the factors leading to production failures (inefficiencies) in agriculture:

$$TE = \exp(-\tau) = \frac{\Pi(p, Z)}{\Pi^*(p, Z)}$$
$$TE_i = f(C_i, X_i, D_i) + \varepsilon_i$$

- ε_i is a random shock with positive distribution for each farmer (represented by the representative farmer of municipality *i*);
- C_i is a <u>vector of climate anomalies</u> (extreme weather variables, for example) in the period for municipality i;
- X_i is a vector of farmer characteristics for municipality *i*;
- and D_i is a vector of other determinants.

Data sources:

- 2006 Brazilian Agricultural Census (IBGE), INMET and INPE **Outputs:**
- Annual crops: soybeans; maize; others
- Perennial crops: coffee; and others
- Livestock: milk and beef cattle
- Forest: wood; and other forest products

Inputs:

- Variable: Labor and fertilizers
- Quasi-fixed: Land and Capital (proxy: energy consumption)

Technological variables:

 Irrigation, mechanical harvesting, certified/transgenic seeds, confined cattle, art. insemination, tilled area, etc.

TE determinants:

 schooling, experience, memberships, crop diversification, climate, farm management, among others

LONG-TERM RESULTS: Analyzing historical climate

LONG-TERM RESULTS

1st Results: <u>Historical climate matters!</u> (imposing consistency of choice)

- Statistical relevance of average climate to explain farmers' profits
- Statistical relevance of technological variables
- Non-rejection of the inefficiency component in profits

2nd Results: Expected climate change impacts

Total impact	2070-2099		2040-20 <u>69</u>	
(in thousand US\$)	A2	B2	A2	B2
SOYBEANS	18,356,391	7,800,817	7,492,002	5,797,190
MAIZE	-32,405,954	-21,173,862	-16,616,423	-13,391,211
OTHER ANNUAL.	2,856,792	-468,878	1,449,614	1,414,939
COFFEE	-4,303,034	-4,374,969	-2,721,208	-2,758,696
OTHER PEREN.	2,483,300	-371,177	-717,465	-1,730,494
MILK	6,833,588	-1,331,718	2,492,212	-707,374
WOOD	865,875	676,169	673,609	715,158
BEEF	-3,657,008	-2,248,954	-2,128,847	-1,619,200
OTHER FOR.	-11,812	-12,157	-7,045	-12,700
Total	-8,981,861	-21,504,728	-10,083,551	-12,292,387
% of Agric. GDP*	-8.7%	-20.9%	-9.8%	-12.0%

Expected loss/gain in thousand dollars, by product

2nd Results: Expected climate change impacts

Total impact (in thousand US\$)	2070-2099		2040-2069		
	A2	B2	A2	B2	
North	4,099,362	3,080,740	1,871,070	984,517	
Northeast	3,600,090	-6,703,599	-6,069,200	-5,103,463	
Southeast	-9,218,995	-11,303,049	-6,653,777	-6,758,171	
South	25,330,504	15,699,132	18,422,657	14,130,940	
Midwest	-32,792,822	-22,277,952	-17,654,301	-15,546,211	
Total	-8,981,861	-21,504,728	-10,083,551	-12,292,387	

Expected loss/gain in thousand dollars, by region.

3rd Results: Compensation measures for expected climate change

Variation in the technological variables (that compensate expected climate change losses in production, scenario B2 and forecast period 2040-2069)

Adaptation measures (in % of change)	Mechanical harvesting	Confine d cattle	Irrigated area	Tilled area	Transgenic or certified seeds
Scenario B2 (2040-2	2069)				
beef	-	25.20%	-	-	n.s.
coffee	2.20%	-	0.70%	1.90%	4.90%
milk	-	3.40%	-	-	-
maize	6.00%	-	9.10%	44.60%	5.80%
other for	n.s	-	1.50%	4.80%	5.80%
other peren.	1.50%	-	0.70%	6.80%	5.50%
other annual	12.70%	-	1.50%	11.80%	10.30%
soybeans	27.40%	-	18.00%	55.80%	131.30%
wood	n.s	n.s	0.30%	n.s	3.60%
	100/				

n.s. not statistically significant at 10%

Conclusions:

- Soybean production: positively affected by higher summer temperatures in most regions
- Expected climate changes (net losses in % of agricultural GDP, 2011):
 - 9.8 to 12% for 2040-2069 / 8.7 to 21% for 2070-2099
 - More damage in the Midwest, Northeast and Southeast regions
 - Positive effects: South and North regions
- Compensation/productivity measures:
 - Irrigation seems to be the most important compensation technique
 - Transgenic and certified seeds are relevant for crops in general
 - Cattle confinement to compensate milk and beef losses
 - Mechanical harvesting for maize and other annual crops, and tilled area for coffee and other annual and perennial crops

SHORT-TERM RESULTS: Analyzing extreme events

Extreme Weather and Agriculture

SHORT-TERM RESULTS

Climate anomaly data: climate information by season demeaned by the long-term climate data (30-year average). Four indexes are created to test their impact on profits:

- *Drought Index*: Observed rainfall below the long-term average rainfall in standard deviations;
- *Flood Index*: Observed rainfall above the long-term average rainfall in standard deviations;
- *Cold Stress Index*: Observed air temperature below the long-term average in standard deviations; and
- *Heat Stress Index:* Observed air temperature above the long-term average in standard deviations.

Extreme Weather & Agriculture

Results:

- Extreme weather events impact farmers' outcomes
- The most relevant actions to increase farmers' efficiency are:
 - membership in cooperatives or other associations;
 - local higher education;
 - credit access; and
 - crop specialization.

Extreme Weather & Agriculture

Estimated impact of weather anomalies on profits, Brazil.

Estimates	% of profits	Loss (-) or gain (+) in million reais (Dec-2006)	Loss (-) or gain (+) in million dollars (Dec-2011)
2005 and 2006 and	malies		
Rainfall	-5.60%	-21,440.7	-14,879.6
Temperature	3.34%	12,803.2	8,885.3
Drought or cold st	ess		
Drought	-30.50%	-116,689.1	-80,981.0
Cold stress	-13.19%	-50,474.2	-35,028.5

Percentage of profit losses due to climate anomalies, by region

Region	Cold stress	Drought
North	-13.1%	-30.3%
Northeast	-13.0%	-30.0%
Southeast	-12.8%	-29.5%
South	-13.6%	-31.4%
Midwest	-15.5%	-35.9%

Policy Discussion

Expected climate change

Policymakers are the only agents that can think about the <u>sustainability of the country in the long run</u> in order to plan specific actions.

Agriculture: Actions to build flexible production systems (technology)

- use of irrigation is the main compensation instrument
- transgenic/certified seeds, confined cattle and tilled area are also important adaptation measures to smooth the climate change effects.
- In particular, transgenic/certified seeds: sustainable way that serve as an insurance policy in response to potential changes in production conditions.

Policy Discussion

Short-term interventions

<u>Monetary and social losses due to weather : equitable problem</u> Public intervention to stimulate the market to produce alternatives

In agriculture:

- cooperatives, crop specialization, credit access help farmers to be more efficient
- Discussion of insurance instruments: important actions to protect farmers from extreme weather harmful situations (max. farmer propensity to pay is 15 billion dollars due to the lack of rainfall)
- Weather index insurance mechanism: market-driven solution.
- Many barriers in the current Brazilian rural insurance market: mainly lack of information, data management, rural insurance consolidation

Future research and limitations

Future research:

- Agricultural studies:
 - Account costs and barriers of the adaptation measures (compare techniques)
 - Map investment need/penetration of each technique in the municipalities
 - Include new questions regarding those technologies (Agricultural Census)
 - Develop frost/hail index instead of cold stress index

Limitations:

- Method: Partial analysis
- Risk assess. in agriculture: lack of precision/ frequency of climate data for Brazil to implement better rural insurance.
- Time horizon of the analysis: data limitation

Obrigada.