

Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Business

Shared Autonomous Vehicles and their contribution to improve rural public transport

Sebastian Imhof

Competence Centre Mobility Lucerne University of Applied Sciences and Arts Research Associate

T direct +41 41 228 99 93 sebastian.imhof@hslu.ch

London 15 November 2018

Economic GeographyUniversity of BernPhD Candidate

UNIVERSITÄT

Research Inspiration

"Autonomous vehicles substantially change the accessibility landscape for Switzerland. ... The strongest positive impact on accessibility is observed for well-connected exurban and rural municipalities." (Meyer et al. 2018)

- Public transport in urban areas will not loose its relevance upon market entry of shared autonomous vehicles (SAV) due to (space) efficiency (Buehler 2018)
- Public transport in rural areas is highly subsidized and under pressure to operate efficient

UNIVERSITÄT BERN

Research Questions

- What are economic and spatial consequences of SAVs on public rural transport?
- Is there still an eligibility for big, line bound public transport in times of SAVs in rural areas?
- How does a sustainable, successful SAV service concept have to be designed to improve rural transport networks?

UNIVERSITÄT

Relevance of the research

- Public transport as an important part of public service in Switzerland
- Swiss law ensures accessibility of settlements with more than 100 inhabitants by public transport
- Research on SAV service concepts concentrates on urban areas and on privately owned autonomous cars
 - Less concentration of complementing existing public transport
- Market entry of SAVs \rightarrow change of balance public and private transport

⁶ UNIVERSITÄT BERN

Methods

- Step 1: Development of two service concepts with matching hub concept

Case study approach: Service Concept 0

Case study approach: Service Concept 1 & 2

ป

UNIVERSITÄT

Methods

- Step 1: Development of two service concepts with matching hub concept
- Step 2: Assessment of demand, costs and revenues
 - Public transport demand (2013) for average weekday (average and peak-hour)
 - Apportionment of demand using origin-destination trips (overall traffic model)
 - Assignment of outbound trips to a hub (local traffic: direct SAV-trips)
 - Change of demand based on elasticities (frequency, travel time, changes)
 - Costs and revenues based on current economic situation
 - Costs for autonomous vehicles; degree of utilization of SAV: 2,5 persons per vehicle (Bösch et al. 2016; Bösch et al. 2018)
 - Assumption of stable prices for public transport
- Step 3: Consequences on commuter railway and long-distance traffic
- Step 4: SWOT analysis of the concepts

Cost reduction due to automatisation

- Commuter railway: 5-15% of operating costs (expert's opinion)
- Bus/Taxi (\rightarrow SAV): 50% of operating costs (Spieser et al. 2014)

^b UNIVERSITÄT BERN

Findings: Selected KPIs

	Service Concept	0 Bus & railway	1 SAV	2 SAV & railway
Economic	Cost-efficiency	51%	111%	108%
	Daily demand public transp.	8′817	11′678 +32.46%	11′451 +29.89%
	Costs per trip	5.60 CHF	3.07 CHF	3.74 CHF

Case study approach: Service Concept 1 & 2

ป

UNIVERSITÄT

Discussion

- Intelligent concept design for improving rural public transport
 - On-demand services as in urban areas possible
- **Sustainable transport**: SAV & commuter railway
 - Lower initial investment necessary
 - Usage of existing infrastructure (S-train line): **strength of commuter railway** remains in context of services with SAVs
- Regulative context for sustainable compatibility
 - road pricing for privately owned SAVs
 - Expansion of service area to urban areas \rightarrow desirable?
 - incentives to share vehicles

ป

UNIVERSITÄT

Open Questions

- Sustainable transport as theoretical background, integration of regional development theories?
- Spatial consequences only discussed on a basic level, further implications not predictable due to **uncertain development paths** of autonomous vehicles
 - Housing market? Working places? Disinvestment in transport infrastructure (service concept 1)?
- Regulation necessary, on which levels?
 - private as well as public transport \rightarrow possible?

Hochschule Luzern Business

UNIVERSITÄT BERN

บ้

Bibliography

- Bösch, P. M., Becker, F., Becker, H., & Axhausen, K. W. (2018). Cost-based analysis of autonomous mobility services. *Transport Policy*, *64*, 76–91. <u>https://doi.org/10.1016/j.tranpol.2017.09.005</u>
- Bösch, P. M., Ciari, F., & Axhausen, K. W. (2016). Autonomous Vehicle Fleet Sizes Required to Serve Different Levels of Demand. *Transportation Research Record: Journal of the Transportation Research Board*, 2542, 111–119. <u>https://doi.org/10.3141/2542-13</u>
- Buehler, R. (2018). Can Public Transportation Compete with Automated and Connected Cars? *Journal* of *Public Transportation*, 21(1), 7–18. <u>https://doi.org/10.5038/2375-0901.21.1.2</u>
- Meyer, J., Becker, H., Bösch, P. M., & Axhausen, K. W. (2016). Impact of Autonomous Vehicles on the Accessibility in Switzerland. *Arbeitsberichte Der Verkehrs- Und Raumplanung*, *1177*. Retrieved from <u>https://www.research-collection.ethz.ch/handle/20.500.11850/118781.2</u>
- Sonderegger, Roger et al. 2018. *Selbstfahrende Fahrzeuge im öffentlichen Verkehr. Neue Geschäftsmodelle für die SBB im ländlichen Raum* ? Luzern, Zürich, Berlin.
- Spieser, Kevin et al. 2014. Toward a Systematic Approach to the Design and Evaluation of Automated Mobility-on-Demand Systems: A Case Study in Singapore. In *Road Vehicle Automation*, Eds. Gereon Meyer and Sven Beiker, 229–245. Cham: Springer International Publishing.